2 resultados para luminal
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The application of computational fluid dynamics (CFD) and finite element analysis (FEA) has been growing rapidly in the various fields of science and technology. One of the areas of interest is in biomedical engineering. The altered hemodynamics inside the blood vessels plays a key role in the development of the arterial disease called atherosclerosis, which is the major cause of human death worldwide. Atherosclerosis is often treated with the stenting procedure to restore the normal blood flow. A stent is a tubular, flexible structure, usually made of metals, which is driven and expanded in the blocked arteries. Despite the success rate of the stenting procedure, it is often associated with the restenosis (re-narrowing of the artery) process. The presence of non-biological device in the artery causes inflammation or re-growth of atherosclerotic lesions in the treated vessels. Several factors including the design of stents, type of stent expansion, expansion pressure, morphology and composition of vessel wall influence the restenosis process. Therefore, the role of computational studies is crucial in the investigation and optimisation of the factors that influence post-stenting complications. This thesis focuses on the stent-vessel wall interactions followed by the blood flow in the post-stenting stage of stenosed human coronary artery. Hemodynamic and mechanical stresses were analysed in three separate stent-plaque-artery models. Plaque was modeled as a multi-layer (fibrous cap (FC), necrotic core (NC), and fibrosis (F)) and the arterial wall as a single layer domain. CFD/FEA simulations were performed using commercial software packages in several models mimicking the various stages and morphologies of atherosclerosis. The tissue prolapse (TP) of stented vessel wall, the distribution of von Mises stress (VMS) inside various layers of vessel wall, and the wall shear stress (WSS) along the luminal surface of the deformed vessel wall were measured and evaluated. The results revealed the role of the stenosis size, thickness of each layer of atherosclerotic wall, thickness of stent strut, pressure applied for stenosis expansion, and the flow condition in the distribution of stresses. The thicknesses of FC, and NC and the total thickness of plaque are critical in controlling the stresses inside the tissue. A small change in morphology of artery wall can significantly affect the distribution of stresses. In particular, FC is the most sensitive layer to TP and stresses, which could determine plaque’s vulnerability to rupture. The WSS is highly influenced by the deflection of artery, which in turn is dependent on the structural composition of arterial wall layers. Together with the stenosis size, their roles could play a decisive role in controlling the low values of WSS (<0.5 Pa) prone to restenosis. Moreover, the time dependent flow altered the percentage of luminal area with WSS values less than 0.5 Pa at different time instants. The non- Newtonian viscosity model of the blood properties significantly affects the prediction of WSS magnitude. The outcomes of this investigation will help to better understand the roles of the individual layers of atherosclerotic vessels and their risk to provoke restenosis at the post-stenting stage. As a consequence, the implementation of such an approach to assess the post-stented stresses will assist the engineers and clinicians in optimizing the stenting techniques to minimize the occurrence of restenosis.
Resumo:
Intermediate filament keratins (K) play a pivotal role in protein targeting and epithelialcytoprotection from stress as evidenced by keratin mutations predisposing to human liver and skin diseases and possibly inflammatory bowel disease (IBD). The K8-null (K8-/-) mice exhibit colonic phenotype similar to IBD and marked spontaneous colitis, epithelial hyperproliferation, decreased apoptosis, mistargeting of proteins leading to defective ion transport and diarrhea. The K8-heterozygote (K8+/-) mouse colon appears normal but displays a defective sodium (Na+) and chloride (Cl-) transport similar to, but milder than K8-/-. Characterization of K8+/- colon revealed ~50% less keratins (K7, K8, K19, K20) compared to K8 wild type (K8+/+). A similar ~50% decrease was seen in K8+/- mRNA levels as compared to K8+/+, while the mRNA levels for the other keratins were unaltered. K8+/- keratins were arranged in a normal colonic crypt expression pattern, except K7 which was expressed at the top of crypts in contrast to K8+/+. The K8+/- colon showed mild hyperplasia but no signs of inflammation and no resistance to apoptosis. Experimental colitis induced by using different concentrations of dextran sulphate sodium (DSS) showed that K8+/- mice are slightly more sensitive to induced colitis and showed a delayed recovery compared to K8+/+. Hence, the K8+/- mouse with less keratins and without inflammation, provided a novel model to study direct molecular mechanisms of keratins in intestinal homeostasis and ion transport. Different candidate ion transporters for a possible role in altered ion transport seen in the K8-/- and K8+/- mouse colon were evaluated. Besides normal levels of CFTR, PAT-1 and NHE-3, DRA mRNA levels were decreased 3-4-fold and DRA protein nearly entirely lost in K8-/- caecum, distal and proximal colon compared to K8+/+. In K8+/- mice, DRA mRNA levels were unaltered while decreased DRA protein level and patchy distribution was detected particularly in the proximal colon and as compared to K8+/+. DRA was similarly decreased when K8 was knocked-down in Caco-2 cells, confirming that K8 levels modulate DRA levels in an inflammation-independent manner. The dramatic loss of DRA in colon and caecum of K8-/- mice was responsible for the chloride transport defect. The milder ion transport in K8+/- colon might be related to DRA suggesting a role for K8 in regulation of DRA expression and targeting. The current study demonstrates the importance of keratins in stress protection and cell signaling. Furthermore, we have also successfully developed a novel, simple, fast, cost effective, non-invasive in vivo imaging method for the early diagnosis of murine colitis with specificity for both genetic and experimental colitis. The said modality provides continuous measurements of reactive oxygen and nitrogen species (RONS) and minimizes the use of an increased number of experimental animals by using a luminal derivative chemiluminescent probe, L-012 which provides a cost-effective tool to study the level and longitudinal progression of colitis.