303 resultados para k-nearest neighbours
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Abstract
Resumo:
Problem of modeling of anaesthesia depth level is studied in this Master Thesis. It applies analysis of EEG signals with nonlinear dynamics theory and further classification of obtained values. The main stages of this study are the following: data preprocessing; calculation of optimal embedding parameters for phase space reconstruction; obtaining reconstructed phase portraits of each EEG signal; formation of the feature set to characterise obtained phase portraits; classification of four different anaesthesia levels basing on previously estimated features. Classification was performed with: Linear and quadratic Discriminant Analysis, k Nearest Neighbours method and online clustering. In addition, this work provides overview of existing approaches to anaesthesia depth monitoring, description of basic concepts of nonlinear dynamics theory used in this Master Thesis and comparative analysis of several different classification methods.
Resumo:
Vaikka keraamisten laattojen valmistusprosessi onkin täysin automatisoitu, viimeinen vaihe eli laaduntarkistus ja luokittelu tehdään yleensä ihmisvoimin. Automaattinen laaduntarkastus laattojen valmistuksessa voidaan perustella taloudellisuus- ja turvallisuusnäkökohtien avulla. Tämän työn tarkoituksena on kuvata tutkimusprojektia keraamisten laattojen luokittelusta erilaisten väripiirteiden avulla. Oleellisena osana tutkittiin RGB- ja spektrikuvien välistä eroa. Työn teoreettinen osuus käy läpi aiemmin aiheesta tehdyn tutkimuksen sekä antaa taustatietoa konenäöstä, hahmontunnistuksesta, luokittelijoista sekä väriteoriasta. Käytännön osan aineistona oli 25 keraamista laattaa, jotka olivat viidestä eri luokasta. Luokittelussa käytettiin apuna k:n lähimmän naapurin (k-NN) luokittelijaa sekä itseorganisoituvaa karttaa (SOM). Saatuja tuloksia verrattiin myös ihmisten tekemään luokitteluun. Neuraalilaskenta huomattiin tärkeäksi työkaluksi spektrianalyysissä. SOM:n ja spektraalisten piirteiden avulla saadut tulokset olivat lupaavia ja ainoastaan kromatisoidut RGB-piirteet olivat luokittelussa parempia kuin nämä.
Resumo:
Dirt counting and dirt particle characterisation of pulp samples is an important part of quality control in pulp and paper production. The need for an automatic image analysis system to consider dirt particle characterisation in various pulp samples is also very critical. However, existent image analysis systems utilise a single threshold to segment the dirt particles in different pulp samples. This limits their precision. Based on evidence, designing an automatic image analysis system that could overcome this deficiency is very useful. In this study, the developed Niblack thresholding method is proposed. The method defines the threshold based on the number of segmented particles. In addition, the Kittler thresholding is utilised. Both of these thresholding methods can determine the dirt count of the different pulp samples accurately as compared to visual inspection and the Digital Optical Measuring and Analysis System (DOMAS). In addition, the minimum resolution needed for acquiring a scanner image is defined. By considering the variation in dirt particle features, the curl shows acceptable difference to discriminate the bark and the fibre bundles in different pulp samples. Three classifiers, called k-Nearest Neighbour, Linear Discriminant Analysis and Multi-layer Perceptron are utilised to categorize the dirt particles. Linear Discriminant Analysis and Multi-layer Perceptron are the most accurate in classifying the segmented dirt particles by the Kittler thresholding with morphological processing. The result shows that the dirt particles are successfully categorized for bark and for fibre bundles.
Resumo:
In this thesis, a classi cation problem in predicting credit worthiness of a customer is tackled. This is done by proposing a reliable classi cation procedure on a given data set. The aim of this thesis is to design a model that gives the best classi cation accuracy to e ectively predict bankruptcy. FRPCA techniques proposed by Yang and Wang have been preferred since they are tolerant to certain type of noise in the data. These include FRPCA1, FRPCA2 and FRPCA3 from which the best method is chosen. Two di erent approaches are used at the classi cation stage: Similarity classi er and FKNN classi er. Algorithms are tested with Australian credit card screening data set. Results obtained indicate a mean classi cation accuracy of 83.22% using FRPCA1 with similarity classi- er. The FKNN approach yields a mean classi cation accuracy of 85.93% when used with FRPCA2, making it a better method for the suitable choices of the number of nearest neighbors and fuzziness parameters. Details on the calibration of the fuzziness parameter and other parameters associated with the similarity classi er are discussed.
Resumo:
Kandidaatintyö tehtiin osana PulpVision-tutkimusprojektia, jonka tarkoituksena on kehittää kuvapohjaisia laskenta- ja luokittelumetodeja sellun laaduntarkkailuun paperin valmistuksessa. Tämän tutkimusprojektin osana on aiemmin kehitetty metodi, jolla etsittiin kaarevia rakenteita kuvista, ja tätä metodia hyödynnettiin kuitujen etsintään kuvista. Tätä metodia käytettiin lähtökohtana kandidaatintyölle. Työn tarkoituksena oli tutkia, voidaanko erilaisista kuitukuvista laskettujen piirteiden avulla tunnistaa kuvassa olevien kuitujen laji. Näissä kuitukuvissa oli kuituja neljästä eri puulajista ja yhdestä kasvista. Nämä lajit olivat akasia, koivu, mänty, eukalyptus ja vehnä. Jokaisesta lajista valittiin 100 kuitukuvaa ja nämä kuvat jaettiin kahteen ryhmään, joista ensimmäistä käytettiin opetusryhmänä ja toista testausryhmänä. Opetusryhmän avulla jokaiselle kuitulajille laskettiin näitä kuvaavia piirteitä, joiden avulla pyrittiin tunnistamaan testausryhmän kuvissa olevat kuitulajit. Nämä kuvat oli tuottanut CEMIS-Oulu (Center for Measurement and Information Systems), joka on mittaustekniikkaan keskittynyt yksikkö Oulun yliopistossa. Yksittäiselle opetusryhmän kuitukuvalle laskettiin keskiarvot ja keskihajonnat kolmesta eri piirteestä, jotka olivat pituus, leveys ja kaarevuus. Lisäksi laskettiin, kuinka monta kuitua kuvasta löydettiin. Näiden piirteiden eri yhdistelmien avulla testattiin tunnistamisen tarkkuutta käyttämällä k:n lähimmän naapurin menetelmää ja Naiivi Bayes -luokitinta testausryhmän kuville. Testeistä saatiin lupaavia tuloksia muun muassa pituuden ja leveyden keskiarvoja käytettäessä saavutettiin jopa noin 98 %:n tarkkuus molemmilla algoritmeilla. Tunnistuksessa kuitujen keskimäärinen pituus vaikutti olevan kuitukuvia parhaiten kuvaava piirre. Käytettyjen algoritmien välillä ei ollut suurta vaihtelua tarkkuudessa. Testeissä saatujen tulosten perusteella voidaan todeta, että kuitukuvien tunnistaminen on mahdollista. Testien perusteella kuitukuvista tarvitsee laskea vain kaksi piirrettä, joilla kuidut voidaan tunnistaa tarkasti. Käytetyt lajittelualgoritmit olivat hyvin yksinkertaisia, mutta ne toimivat testeissä hyvin.
Resumo:
Kirje
Resumo:
Kirje 27.3.1932