9 resultados para interactive fuzzy satisfying method

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents an analysis of recently enacted Russian renewable energy policy based on capacity mechanism. Considering its novelty and poor coverage by academic literature, the aim of the thesis is to analyze capacity mechanism influence on investors’ decision-making process. The current research introduces a number of approaches to investment analysis. Firstly, classical financial model was built with Microsoft Excel® and crisp efficiency indicators such as net present value were determined. Secondly, sensitivity analysis was performed to understand different factors influence on project profitability. Thirdly, Datar-Mathews method was applied that by means of Monte Carlo simulation realized with Matlab Simulink®, disclosed all possible outcomes of investment project and enabled real option thinking. Fourthly, previous analysis was duplicated by fuzzy pay-off method with Microsoft Excel®. Finally, decision-making process under capacity mechanism was illustrated with decision tree. Capacity remuneration paid within 15 years is calculated individually for each RE project as variable annuity that guarantees a particular return on investment adjusted on changes in national interest rates. Analysis results indicate that capacity mechanism creates a real option to invest in renewable energy project by ensuring project profitability regardless of market conditions if project-internal factors are managed properly. The latter includes keeping capital expenditures within set limits, production performance higher than 75% of target indicators, and fulfilling localization requirement, implying producing equipment and services within the country. Occurrence of real option shapes decision-making process in the following way. Initially, investor should define appropriate location for a planned power plant where high production performance can be achieved, and lock in this location in case of competition. After, investor should wait until capital cost limit and localization requirement can be met, after that decision to invest can be made without any risk to project profitability. With respect to technology kind, investment into solar PV power plant is more attractive than into wind or small hydro power, since it has higher weighted net present value and lower standard deviation. However, it does not change decision-making strategy that remains the same for each technology type. Fuzzy pay-method proved its ability to disclose the same patterns of information as Monte Carlo simulation. Being effective in investment analysis under uncertainty and easy in use, it can be recommended as sufficient analytical tool to investors and researchers. Apart from described results, this thesis contributes to the academic literature by detailed description of capacity price calculation for renewable energy that was not available in English before. With respect to methodology novelty, such advanced approaches as Datar-Mathews method and fuzzy pay-off method are applied on the top of investment profitability model that incorporates capacity remuneration calculation as well. Comparison of effects of two different RE supporting schemes, namely Russian capacity mechanism and feed-in premium, contributes to policy comparative studies and exhibits useful inferences for researchers and policymakers. Limitations of this research are simplification of assumptions to country-average level that restricts our ability to analyze renewable energy investment region wise and existing limitation of the studying policy to the wholesale power market that leaves retail markets and remote areas without our attention, taking away medium and small investment into renewable energy from the research focus. Elimination of these limitations would allow creating the full picture of Russian renewable energy investment profile.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This master thesis work introduces the fuzzy tolerance/equivalence relation and its application in cluster analysis. The work presents about the construction of fuzzy equivalence relations using increasing generators. Here, we investigate and research on the role of increasing generators for the creation of intersection, union and complement operators. The objective is to develop different varieties of fuzzy tolerance/equivalence relations using different varieties of increasing generators. At last, we perform a comparative study with these developed varieties of fuzzy tolerance/equivalence relations in their application to a clustering method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since its introduction, fuzzy set theory has become a useful tool in the mathematical modelling of problems in Operations Research and many other fields. The number of applications is growing continuously. In this thesis we investigate a special type of fuzzy set, namely fuzzy numbers. Fuzzy numbers (which will be considered in the thesis as possibility distributions) have been widely used in quantitative analysis in recent decades. In this work two measures of interactivity are defined for fuzzy numbers, the possibilistic correlation and correlation ratio. We focus on both the theoretical and practical applications of these new indices. The approach is based on the level-sets of the fuzzy numbers and on the concept of the joint distribution of marginal possibility distributions. The measures possess similar properties to the corresponding probabilistic correlation and correlation ratio. The connections to real life decision making problems are emphasized focusing on the financial applications. We extend the definitions of possibilistic mean value, variance, covariance and correlation to quasi fuzzy numbers and prove necessary and sufficient conditions for the finiteness of possibilistic mean value and variance. The connection between the concepts of probabilistic and possibilistic correlation is investigated using an exponential distribution. The use of fuzzy numbers in practical applications is demonstrated by the Fuzzy Pay-Off method. This model for real option valuation is based on findings from earlier real option valuation models. We illustrate the use of number of different types of fuzzy numbers and mean value concepts with the method and provide a real life application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, a classi cation problem in predicting credit worthiness of a customer is tackled. This is done by proposing a reliable classi cation procedure on a given data set. The aim of this thesis is to design a model that gives the best classi cation accuracy to e ectively predict bankruptcy. FRPCA techniques proposed by Yang and Wang have been preferred since they are tolerant to certain type of noise in the data. These include FRPCA1, FRPCA2 and FRPCA3 from which the best method is chosen. Two di erent approaches are used at the classi cation stage: Similarity classi er and FKNN classi er. Algorithms are tested with Australian credit card screening data set. Results obtained indicate a mean classi cation accuracy of 83.22% using FRPCA1 with similarity classi- er. The FKNN approach yields a mean classi cation accuracy of 85.93% when used with FRPCA2, making it a better method for the suitable choices of the number of nearest neighbors and fuzziness parameters. Details on the calibration of the fuzziness parameter and other parameters associated with the similarity classi er are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, feature selection in classification based problems is highlighted. The role of feature selection methods is to select important features by discarding redundant and irrelevant features in the data set, we investigated this case by using fuzzy entropy measures. We developed fuzzy entropy based feature selection method using Yu's similarity and test this using similarity classifier. As the similarity classifier we used Yu's similarity, we tested our similarity on the real world data set which is dermatological data set. By performing feature selection based on fuzzy entropy measures before classification on our data set the empirical results were very promising, the highest classification accuracy of 98.83% was achieved when testing our similarity measure to the data set. The achieved results were then compared with some other results previously obtained using different similarity classifiers, the obtained results show better accuracy than the one achieved before. The used methods helped to reduce the dimensionality of the used data set, to speed up the computation time of a learning algorithm and therefore have simplified the classification task

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Julkaisumaa: 056 BE BEL Belgia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real option valuation, in particular the fuzzy pay-off method, has proven to be useful in defining risk and visualizing imprecision of investments in various industry applications. This study examines whether the evaluation of risk and profitability for public real estate investments can be improved by using real option methodology. Firstly, the context of real option valuation in the real estate industry is examined. Further, an empirical case study is performed on 30 real estate investments of a Finnish government enterprise in order to determine whether the presently used investment analysis system can be complemented by the pay-off method. Despite challenges in the application of the pay-off method to the case company’s large investment base, real option valuation is found to create additional value and facilitate more robust risk analysis in public real estate applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The shift towards a knowledge-based economy has inevitably prompted the evolution of patent exploitation. Nowadays, patent is more than just a prevention tool for a company to block its competitors from developing rival technologies, but lies at the very heart of its strategy for value creation and is therefore strategically exploited for economic pro t and competitive advantage. Along with the evolution of patent exploitation, the demand for reliable and systematic patent valuation has also reached an unprecedented level. However, most of the quantitative approaches in use to assess patent could arguably fall into four categories and they are based solely on the conventional discounted cash flow analysis, whose usability and reliability in the context of patent valuation are greatly limited by five practical issues: the market illiquidity, the poor data availability, discriminatory cash-flow estimations, and its incapability to account for changing risk and managerial flexibility. This dissertation attempts to overcome these impeding barriers by rationalizing the use of two techniques, namely fuzzy set theory (aiming at the first three issues) and real option analysis (aiming at the last two). It commences with an investigation into the nature of the uncertainties inherent in patent cash flow estimation and claims that two levels of uncertainties must be properly accounted for. Further investigation reveals that both levels of uncertainties fall under the categorization of subjective uncertainty, which differs from objective uncertainty originating from inherent randomness in that uncertainties labelled as subjective are highly related to the behavioural aspects of decision making and are usually witnessed whenever human judgement, evaluation or reasoning is crucial to the system under consideration and there exists a lack of complete knowledge on its variables. Having clarified their nature, the application of fuzzy set theory in modelling patent-related uncertain quantities is effortlessly justified. The application of real option analysis to patent valuation is prompted by the fact that both patent application process and the subsequent patent exploitation (or commercialization) are subject to a wide range of decisions at multiple successive stages. In other words, both patent applicants and patentees are faced with a large variety of courses of action as to how their patent applications and granted patents can be managed. Since they have the right to run their projects actively, this flexibility has value and thus must be properly accounted for. Accordingly, an explicit identification of the types of managerial flexibility inherent in patent-related decision making problems and in patent valuation, and a discussion on how they could be interpreted in terms of real options are provided in this dissertation. Additionally, the use of the proposed techniques in practical applications is demonstrated by three fuzzy real option analysis based models. In particular, the pay-of method and the extended fuzzy Black-Scholes model are employed to investigate the profitability of a patent application project for a new process for the preparation of a gypsum-fibre composite and to justify the subsequent patent commercialization decision, respectively; a fuzzy binomial model is designed to reveal the economic potential of a patent licensing opportunity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

User experience is a crucial element in interactive storytelling, and as such it is important to recognize the different aspects of a positive user experience in an interactive story. Towards that goal, in the first half of this thesis, we will go through the different elements that make up the user experience, with a strong focus on agency. Agency can be understood as the user’s ability to affect the story or the world in which the story is told with interesting and satisfying choices. The freedoms granted by agency are not completely compatible with traditional storytelling, and as such we will also go through some of the issues of agency-centric design philosophies and explore alternate schools of thought. The core purpose of this thesis is to determine the most important aspects of agency with regards to a positive user experience and attempt to find ways for authors to improve the overall quality of user experience in interactive stories. The latter half of this thesis deals with the research conducted on this matter. This research was carried out by analyzing data from an online survey coupled with data gathered by the interactive storytelling system specifically made for this research (Regicide). The most important aspects of this research deal with influencing perceived agency and facilitating an illusion of agency in different ways, and comparing user experiences in these different test environments. The most important findings based on this research include the importance of context-controlled and focused agency and settings in which the agency takes place and the importance of ensuring user-competency within an interactive storytelling system. Another essential conclusion to this research boils down to communication between the user and the system; the goal of influencing perceived agency should primarily be to ensure that the user is aware of all the theoretical agency they possess.