3 resultados para hydrogenated soy phosphatidylcholine

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dietary and microbial factors are thought to contribute to the rapidly increasing prevalence of T1D in many countries worldwide. The impact of these factors on immune regulation and diabetes development in non-obese diabetic (NOD) mice are investigated in this thesis. Diabetes can be prevented in NOD mice through dietary manipulation. Diet affects the composition of intestinal microbiota, which may subsequently influence intestinal immune homeostasis. However, the specific effects of anti-diabetogenic diets on gut immunity and the explicit associations between intestinal immune disruption and type 1 diabetes onset remain unclear. The research presented herein demonstrates that newly weaned NOD mice suffer from a mild level of colitis, which shifts the colonic immune cell balance towards a proinflammatory status. Several aberrations can also be observed in the peritoneal B cells of NOD mice; an increase in activation marker expression, increased trafficking to the pancreatic lymph nodes and significantly higher antigen presenting cell (APC) efficiency towards insulin-specific T cells. A shift towards inflammation is likewise observed in the colon of germ-free NOD mice, but signs of peritoneal B cell activation are lacking in these mice. Remarkably, most of the abnormalities in the colon, peritoneal macrophages and the peritoneal B cell APC activity of NOD mice are abrogated when NOD mice are maintained on a diabetes-preventive, soy-based diet (ProSobee) from the time of weaning. Dietary and microbial factors hence have a significant impact on colonic immune regulation and peritoneal B cell activation and it is suggested that these factors influence diabetes development in NOD mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this master's thesis was to develop a process to increase the value of residual fungal biomass as an animal feed. The increase in value is achieved by enriching the protein content in the biomass and potentially isolating other valuable fractions for productisation. In the literature part of this thesis the composition of fungal biomass and fungal cell wall and the factors affecting them during cultivation are presented. The possible processing options are also presented and evaluated. The soy protein and single cell protein product manufacturing processes are used as examples due to the lack of fungal biomass fractionation processes found in published literature. The second part of this thesis was performed by making laboratory experiments on the developed process, which consisted of acid hydrolysis with subsequent ethanol extraction. Chitin was precipitated from the acid hydrolysate filtrate. The experiments were conducted with three different hydrolysis temperatures and three different acid concentrations. The optimal hydrolysis conditions were 60 °C with 10 %-vol acid concentration. Optimal conditions in hydrolysis resulted in 30 % increase in protein content in the final biomass. The conceptual process was modelled to scale of 10 000 t/a biomass feed. The mass and energy balances were based on the laboratory experiments. Economic calculations were performed to determine the maximal capital expense while achieving 10 % internal rate of return for the investment. For the basic case the capital expense threshold was 25.8 M€. Four optional cases and parameter sensitivity analysis were performed to determine the effects of changes in the process. The chitin sales had the greatest impact of the individual parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cholesterol (Chol) is an important lipid in cellular membranes functioning both as a membrane fluidity regulator, permeability regulator and co-factor for some membrane proteins, e.g. G-protein coupled receptors. It also participates in the formation of signaling platforms and gives the membrane more mechanical strenght to prevent osmotic lysis of the cell. The sterol structure is very conserved and already minor structural modifications can completely abolish its membrane functions. The right interaction with adjacent lipids and the preference of certain lipid structures over others are also key factors in determining the membrane properties of cholesterol. Because of the many important properties of cholesterol it is of value to understand the forces and structural properties that govern the membrane behavior of this sterol. In this thesis we have used established fluorescence spectroscopy methods to study the membrane behavior of both cholesterol and some of its 3β-modified analogs. Using several fluorescent probes we have established how the acyl chain order of the two main lipid species, sphingomyelin (SM) and phosphatidylcholine (PC) affect sterol partitioning as well as characterized the membrane properties of 3β-aminocholesterol and cholesteryl phosphocholine. We concluded that cholesterol prefers SM over PC at equal acyl chain order, indicating that other structural properties besides the acyl chain order are important for sphingomyelin-sterol interactions. A positive charge at the 3β position only caused minor changes in the sterol membrane behavior compared to cholesterol. A large phosphocholine head group caused a disruption in membrane packing together with other membrane lipids with large head groups, but was also able to form stable fluid bilayers together with ceramide and cholesterol. The Ability of the large head group sterol to form bilayers together with ceramide was further explored in the last paper where cholesteryl phosphocholine/ceramide (Chol-PC/Cer) complexes were successfully used to transfer ceramide into cultured cells.