12 resultados para hybrid methods
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Metaheuristic methods have become increasingly popular approaches in solving global optimization problems. From a practical viewpoint, it is often desirable to perform multimodal optimization which, enables the search of more than one optimal solution to the task at hand. Population-based metaheuristic methods offer a natural basis for multimodal optimization. The topic has received increasing interest especially in the evolutionary computation community. Several niching approaches have been suggested to allow multimodal optimization using evolutionary algorithms. Most global optimization approaches, including metaheuristics, contain global and local search phases. The requirement to locate several optima sets additional requirements for the design of algorithms to be effective in both respects in the context of multimodal optimization. In this thesis, several different multimodal optimization algorithms are studied in regard to how their implementation in the global and local search phases affect their performance in different problems. The study concentrates especially on variations of the Differential Evolution algorithm and their capabilities in multimodal optimization. To separate the global and local search search phases, three multimodal optimization algorithms are proposed, two of which hybridize the Differential Evolution with a local search method. As the theoretical background behind the operation of metaheuristics is not generally thoroughly understood, the research relies heavily on experimental studies in finding out the properties of different approaches. To achieve reliable experimental information, the experimental environment must be carefully chosen to contain appropriate and adequately varying problems. The available selection of multimodal test problems is, however, rather limited, and no general framework exists. As a part of this thesis, such a framework for generating tunable test functions for evaluating different methods of multimodal optimization experimentally is provided and used for testing the algorithms. The results demonstrate that an efficient local phase is essential for creating efficient multimodal optimization algorithms. Adding a suitable global phase has the potential to boost the performance significantly, but the weak local phase may invalidate the advantages gained from the global phase.
Resumo:
Työ käsittelee muovipäällystettyjen ohutlevyjen liimaamista ja liimaukseen liittyviä hybridimenetelmiä. This thesis included plastic plated sheet metal bonding and hybrid methods.
Resumo:
To obtain the desirable accuracy of a robot, there are two techniques available. The first option would be to make the robot match the nominal mathematic model. In other words, the manufacturing and assembling tolerances of every part would be extremely tight so that all of the various parameters would match the “design” or “nominal” values as closely as possible. This method can satisfy most of the accuracy requirements, but the cost would increase dramatically as the accuracy requirement increases. Alternatively, a more cost-effective solution is to build a manipulator with relaxed manufacturing and assembling tolerances. By modifying the mathematical model in the controller, the actual errors of the robot can be compensated. This is the essence of robot calibration. Simply put, robot calibration is the process of defining an appropriate error model and then identifying the various parameter errors that make the error model match the robot as closely as possible. This work focuses on kinematic calibration of a 10 degree-of-freedom (DOF) redundant serial-parallel hybrid robot. The robot consists of a 4-DOF serial mechanism and a 6-DOF hexapod parallel manipulator. The redundant 4-DOF serial structure is used to enlarge workspace and the 6-DOF hexapod manipulator is used to provide high load capabilities and stiffness for the whole structure. The main objective of the study is to develop a suitable calibration method to improve the accuracy of the redundant serial-parallel hybrid robot. To this end, a Denavit–Hartenberg (DH) hybrid error model and a Product-of-Exponential (POE) error model are developed for error modeling of the proposed robot. Furthermore, two kinds of global optimization methods, i.e. the differential-evolution (DE) algorithm and the Markov Chain Monte Carlo (MCMC) algorithm, are employed to identify the parameter errors of the derived error model. A measurement method based on a 3-2-1 wire-based pose estimation system is proposed and implemented in a Solidworks environment to simulate the real experimental validations. Numerical simulations and Solidworks prototype-model validations are carried out on the hybrid robot to verify the effectiveness, accuracy and robustness of the calibration algorithms.
Resumo:
Tämän työn tarkoituksena oli löytää keinoja erään leijukerroskattilan typenoksidipäästöjen vähentämiseksi. Koska päästöt olivat jo alunperin alhaiset leijukerrostekniikan ja hybridin SNCR/SCR –typenpoistolaitteiston ansiosta, päätettiin päästöjä lähteä vähentämään parantamalla ammoniakkiruiskutuksen säätöä. Alkuperäinen ammoniakkiruiskutuksen säätö oli liian hidas, jotta satunnaisten häiriöiden aiheuttamat typenoksidipiikit olisi pystytty poistamaan. Ammoniakkiruiskutusta parannettiin lisäämällä jokaiseen ammoniakkilinjaan mäntäpumput, joiden avulla ammoniakkia voidaan syöttää sinne, missä sitä eniten tarvitaan. Ammoniakkiruiskutuksen säätöön kehitettiin uusi sumeaan logiikkaan perustuva säätäjä. Myös muita kehittyneitä säätömenetelmiä kuten neuroverkkoa hyödynnettiin säätäjän kehityksessä. Ammoniakkiruiskutuksen säätäjää testattiin menestyksekkäästi Ruotsissa Brista Kraftin Märstassa sijaitsevalla voimalaitoksella
Resumo:
Coronary artery disease (CAD) is a chronic process that evolves over decades and may culminate in myocardial infarction (MI). While invasive coronary angiography (ICA) is still considered the gold standard of imaging CAD, non-invasive assessment of both the vascular anatomy and myocardial perfusion has become an intriguing alternative. In particular, computed tomography (CT) and positron emission tomography (PET) form an attractive combination for such studies. Increased radiation dose is, however, a concern. Our aim in the current thesis was to test novel CT and PET techniques alone and in hybrid setting in the detection and assessment of CAD in clinical patients. Along with diagnostic accuracy, methods for the reduction of the radiation dose was an important target. The study investigating the coronary arteries of patients with atrial fibrillation (AF) showed that CAD may be an important etiology of AF because a high prevalence of CAD was demonstrated within AF patients. In patients with suspected CAD, we demonstrated that a sequential, prospectively ECG-triggered CT technique was applicable to nearly 9/10 clinical patients and the radiation dose was over 60% lower than with spiral CT. To detect the functional significance of obstructive CAD, a novel software for perfusion quantification, CarimasTM, showed high reproducibility with 15O-labelled water in PET, supporting feasibility and good clinical accuracy. In a larger cohort of 107 patients with moderate 30-70% pre-test probability of CAD, hybrid PET/CT was shown to be a powerful diagnostic method in the assessment of CAD with diagnostic accuracy comparable to that of invasive angiography and fractional flow reserve (FFR) measurements. A hybrid study may be performed with a reasonable radiation dose in a vast majority of the cases, improving the performance of stand-alone PET and CT angiography, particularly when the absolute quantification of the perfusion is employed. These results can be applied into clinical practice and will be useful for daily clinical diagnosis of CAD.
Resumo:
Metal industries producing thick sections have shown increasing interest in the laser–arc hybrid welding process because of its clear advantages compared with the individual processes of autogenous laser welding and arc welding. One major benefit of laser–arc hybrid welding is that joints with larger gaps can be welded with acceptable quality compared to autogenous laser welding. The laser-arc hybrid welding process has good potential to extend the field of applications of laser technology, and provide significant improvements in weld quality and process efficiency in manufacturing applications. The objective of this research is to present a parameter set-up for laser–arc hybrid welding processes, introduce a methodical comparison of the chosen parameters, and discuss how this technology may be adopted in industrial applications. The research describes the principles, means and applications of different types of laser–arc hybrid welding processes. Conducted experiment processing variables are presented and compared using an analytical model which can also be used for predictive simulations. The main argument in this thesis is that profound understanding of the advanced technology of laser-arc hybrid welding will help improve the productivity of welding in industrial applications. Based on a review of the current knowledge base, important areas for further research are also identified. This thesis consists of two parts. The first part introduces the research topic and discusses laser–arc hybrid welding by characterizing its mechanism and most important variables. The second part comprises four research papers elaborating on the performance of laser– arc hybrid welding in the joining of metals. The study uses quantitative and qualitative research methods which include in-depth, interpretive analyses of results from a number of research groups. In the interpretive analysis, the emphasis is placed on the relevance and usefulness of the investigative results drawn from other research publications. The results of this study contribute to research on laser–arc hybrid welding by increasing understanding of how old and new perspectives on laser–arc hybrid welding are evidenced in industry. The research methodology applied permits continued exploration of how laser–arc hybrid welding and various process factors influence the overall quality of the weld. Thestudy provides a good foundation for future research, creates improved awareness of the laser–arc hybrid welding process, and assists the metal industry to maximize welding productivity.
Resumo:
Mathematical models often contain parameters that need to be calibrated from measured data. The emergence of efficient Markov Chain Monte Carlo (MCMC) methods has made the Bayesian approach a standard tool in quantifying the uncertainty in the parameters. With MCMC, the parameter estimation problem can be solved in a fully statistical manner, and the whole distribution of the parameters can be explored, instead of obtaining point estimates and using, e.g., Gaussian approximations. In this thesis, MCMC methods are applied to parameter estimation problems in chemical reaction engineering, population ecology, and climate modeling. Motivated by the climate model experiments, the methods are developed further to make them more suitable for problems where the model is computationally intensive. After the parameters are estimated, one can start to use the model for various tasks. Two such tasks are studied in this thesis: optimal design of experiments, where the task is to design the next measurements so that the parameter uncertainty is minimized, and model-based optimization, where a model-based quantity, such as the product yield in a chemical reaction model, is optimized. In this thesis, novel ways to perform these tasks are developed, based on the output of MCMC parameter estimation. A separate topic is dynamical state estimation, where the task is to estimate the dynamically changing model state, instead of static parameters. For example, in numerical weather prediction, an estimate of the state of the atmosphere must constantly be updated based on the recently obtained measurements. In this thesis, a novel hybrid state estimation method is developed, which combines elements from deterministic and random sampling methods.
Resumo:
The increasing demand for lightweight components has led to a huge exploitation of non-metallic materials such as polymers, fibers and elastomers in industrial and manufacturing processes. Recent trends towards cost effectiveness, weight reduction and production flexibility in industrial production and manufacturing processes has led to a growing interest in hybrid components where two or more dissimilar materials coexist to achieving specifically optimized characteristics. The importance of this research is to serve as a bridge to understanding the theories behind various joining techniques and the adaptation of the process for metal to polymer hybrid joints. Moreso, it helps companies to select the most productive and yet economical joining process for realization of lightweight metal to polymer hybrid components. This thesis is a literature review analyzing various materials that has been published on various joining methods for metal to polymer hybrid joints on the feasibility and eventual realization of the joint between these dissimilar materials. This study is aimed at theoretically evaluating the feasibility of joining processes between metal and plastic components by exploiting exhaustively joining and welding sources.
Resumo:
The Arctic region becoming very active area of the industrial developments since it may contain approximately 15-25% of the hydrocarbon and other valuable natural resources which are in great demand nowadays. Harsh operation conditions make the Arctic region difficult to access due to low temperatures which can drop below -50 °C in winter and various additional loads. As a result, newer and modified metallic materials are implemented which can cause certain problems in welding them properly. Steel is still the most widely used material in the Arctic regions due to high mechanical properties, cheapness and manufacturability. Moreover, with recent steel manufacturing development it is possible to make up to 1100 MPa yield strength microalloyed high strength steel which can be operated at temperatures -60 °C possessing reasonable weldability, ductility and suitable impact toughness which is the most crucial property for the Arctic usability. For many years, the arc welding was the most dominant joining method of the metallic materials. Recently, other joining methods are successfully implemented into welding manufacturing due to growing industrial demands and one of them is the laser-arc hybrid welding. The laser-arc hybrid welding successfully combines the advantages and eliminates the disadvantages of the both joining methods therefore produce less distortions, reduce the need of edge preparation, generates narrower heat-affected zone, and increase welding speed or productivity significantly. Moreover, due to easy implementation of the filler wire, accordingly the mechanical properties of the joints can be manipulated in order to produce suitable quality. Moreover, with laser-arc hybrid welding it is possible to achieve matching weld metal compared to the base material even with the low alloying welding wires without excessive softening of the HAZ in the high strength steels. As a result, the laser-arc welding methods can be the most desired and dominating welding technology nowadays, and which is already operating in automotive and shipbuilding industries with a great success. However, in the future it can be extended to offshore, pipe-laying, and heavy equipment industries for arctic environment. CO2 and Nd:YAG laser sources in combination with gas metal arc source have been used widely in the past two decades. Recently, the fiber laser sources offered high power outputs with excellent beam quality, very high electrical efficiency, low maintenance expenses, and higher mobility due to fiber optics. As a result, fiber laser-arc hybrid process offers even more extended advantages and applications. However, the information about fiber or disk laser-arc hybrid welding is very limited. The objectives of the Master’s thesis are concentrated on the study of fiber laser-MAG hybrid welding parameters in order to understand resulting mechanical properties and quality of the welds. In this work only ferrous materials are reviewed. The qualitative methodological approach has been used to achieve the objectives. This study demonstrates that laser-arc hybrid welding is suitable for welding of many types, thicknesses and strength of steels with acceptable mechanical properties along very high productivity. New developments of the fiber laser-arc hybrid process offers extended capabilities over CO2 laser combined with the arc. This work can be used as guideline in hybrid welding technology with comprehensive study the effect of welding parameter on joint quality.
Resumo:
Preparative liquid chromatography is one of the most selective separation techniques in the fine chemical, pharmaceutical, and food industries. Several process concepts have been developed and applied for improving the performance of classical batch chromatography. The most powerful approaches include various single-column recycling schemes, counter-current and cross-current multi-column setups, and hybrid processes where chromatography is coupled with other unit operations such as crystallization, chemical reactor, and/or solvent removal unit. To fully utilize the potential of stand-alone and integrated chromatographic processes, efficient methods for selecting the best process alternative as well as optimal operating conditions are needed. In this thesis, a unified method is developed for analysis and design of the following singlecolumn fixed bed processes and corresponding cross-current schemes: (1) batch chromatography, (2) batch chromatography with an integrated solvent removal unit, (3) mixed-recycle steady state recycling chromatography (SSR), and (4) mixed-recycle steady state recycling chromatography with solvent removal from fresh feed, recycle fraction, or column feed (SSR–SR). The method is based on the equilibrium theory of chromatography with an assumption of negligible mass transfer resistance and axial dispersion. The design criteria are given in general, dimensionless form that is formally analogous to that applied widely in the so called triangle theory of counter-current multi-column chromatography. Analytical design equations are derived for binary systems that follow competitive Langmuir adsorption isotherm model. For this purpose, the existing analytic solution of the ideal model of chromatography for binary Langmuir mixtures is completed by deriving missing explicit equations for the height and location of the pure first component shock in the case of a small feed pulse. It is thus shown that the entire chromatographic cycle at the column outlet can be expressed in closed-form. The developed design method allows predicting the feasible range of operating parameters that lead to desired product purities. It can be applied for the calculation of first estimates of optimal operating conditions, the analysis of process robustness, and the early-stage evaluation of different process alternatives. The design method is utilized to analyse the possibility to enhance the performance of conventional SSR chromatography by integrating it with a solvent removal unit. It is shown that the amount of fresh feed processed during a chromatographic cycle and thus the productivity of SSR process can be improved by removing solvent. The maximum solvent removal capacity depends on the location of the solvent removal unit and the physical solvent removal constraints, such as solubility, viscosity, and/or osmotic pressure limits. Usually, the most flexible option is to remove solvent from the column feed. Applicability of the equilibrium design for real, non-ideal separation problems is evaluated by means of numerical simulations. Due to assumption of infinite column efficiency, the developed design method is most applicable for high performance systems where thermodynamic effects are predominant, while significant deviations are observed under highly non-ideal conditions. The findings based on the equilibrium theory are applied to develop a shortcut approach for the design of chromatographic separation processes under strongly non-ideal conditions with significant dispersive effects. The method is based on a simple procedure applied to a single conventional chromatogram. Applicability of the approach for the design of batch and counter-current simulated moving bed processes is evaluated with case studies. It is shown that the shortcut approach works the better the higher the column efficiency and the lower the purity constraints are.