5 resultados para hotspots

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular Characteristics of Neuroblastoma with Special Reference to Novel Prognostic Factors and Diagnostic Applications Department of Medical Biochemistry and Genetics Annales Universitatis Turkuensis, Medica-Odontologica, 2009, Turku, Finland Painosalama Oy, Turku, Finland 2009 Background: Neuroblastoma, which is the most common and extensively studied childhood solid cancer, shows a great clinical and biological heterogeneity. Most of the neuroblastoma patients older than one year have poor prognosis despite intensive therapies. The hallmark of neuroblastoma, biological heterogeneity, has hindered the discovery of prognostic tumour markers. At present, few molecular markers, such as MYCN oncogene status, have been adopted into clinical practice. Aims: The aim of the study was to improve the current prognostic methodology of neuroblastoma, especially by taking cognizance of the biological heterogeneity of neuroblastoma. Furthermore, unravelling novel molecular characteristics which associate with neuroblastoma tumour progression and cell differentiation was an additional objective. Results: A new strictly defined selection of neuroblastoma tumour spots of highest proliferation activity, hotspots, appeared to be representative and reliable in an analysis of MYCN amplification status using a chromogenic in situ hybridization technique (CISH). Based on the hotspot tumour tissue microarray immunohistochemistry and high-resolution oligo-array-based comparative genomic hybridization, which was integrated with gene expression and in silico analysis of existing transcriptomics, a polysialylated neural cell adhesion molecule (NCAM) and poorly characterized amplicon at 12q24.31 were discovered to associate with outcome. In addition, we found that a previously considered new neuroblastoma treatment target, the mutated c-kit receptor, was not mutated in neuroblastoma samples. Conclusions: Our studies indicate polysialylated NCAM and 12q24.31 amplicon to be new molecular markers with important value in prognostic evaluation of neuroblastoma. Moreover, the presented hotspot tumour tissue microarray method together with the CISH technique of the MYCN oncogene copy number is directly applicable to clinical use. Key words: neuroblastoma, polysialic acid, neural cell adhesion molecule, MYCN, c-kit, chromogenic in situ hybridization, hotspot

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiprocessing is a promising solution to meet the requirements of near future applications. To get full benefit from parallel processing, a manycore system needs efficient, on-chip communication architecture. Networkon- Chip (NoC) is a general purpose communication concept that offers highthroughput, reduced power consumption, and keeps complexity in check by a regular composition of basic building blocks. This thesis presents power efficient communication approaches for networked many-core systems. We address a range of issues being important for designing power-efficient manycore systems at two different levels: the network-level and the router-level. From the network-level point of view, exploiting state-of-the-art concepts such as Globally Asynchronous Locally Synchronous (GALS), Voltage/ Frequency Island (VFI), and 3D Networks-on-Chip approaches may be a solution to the excessive power consumption demanded by today’s and future many-core systems. To this end, a low-cost 3D NoC architecture, based on high-speed GALS-based vertical channels, is proposed to mitigate high peak temperatures, power densities, and area footprints of vertical interconnects in 3D ICs. To further exploit the beneficial feature of a negligible inter-layer distance of 3D ICs, we propose a novel hybridization scheme for inter-layer communication. In addition, an efficient adaptive routing algorithm is presented which enables congestion-aware and reliable communication for the hybridized NoC architecture. An integrated monitoring and management platform on top of this architecture is also developed in order to implement more scalable power optimization techniques. From the router-level perspective, four design styles for implementing power-efficient reconfigurable interfaces in VFI-based NoC systems are proposed. To enhance the utilization of virtual channel buffers and to manage their power consumption, a partial virtual channel sharing method for NoC routers is devised and implemented. Extensive experiments with synthetic and real benchmarks show significant power savings and mitigated hotspots with similar performance compared to latest NoC architectures. The thesis concludes that careful codesigned elements from different network levels enable considerable power savings for many-core systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advancements in IC processing technology has led to the innovation and growth happening in the consumer electronics sector and the evolution of the IT infrastructure supporting this exponential growth. One of the most difficult obstacles to this growth is the removal of large amount of heatgenerated by the processing and communicating nodes on the system. The scaling down of technology and the increase in power density is posing a direct and consequential effect on the rise in temperature. This has resulted in the increase in cooling budgets, and affects both the life-time reliability and performance of the system. Hence, reducing on-chip temperatures has become a major design concern for modern microprocessors. This dissertation addresses the thermal challenges at different levels for both 2D planer and 3D stacked systems. It proposes a self-timed thermal monitoring strategy based on the liberal use of on-chip thermal sensors. This makes use of noise variation tolerant and leakage current based thermal sensing for monitoring purposes. In order to study thermal management issues from early design stages, accurate thermal modeling and analysis at design time is essential. In this regard, spatial temperature profile of the global Cu nanowire for on-chip interconnects has been analyzed. It presents a 3D thermal model of a multicore system in order to investigate the effects of hotspots and the placement of silicon die layers, on the thermal performance of a modern ip-chip package. For a 3D stacked system, the primary design goal is to maximise the performance within the given power and thermal envelopes. Hence, a thermally efficient routing strategy for 3D NoC-Bus hybrid architectures has been proposed to mitigate on-chip temperatures by herding most of the switching activity to the die which is closer to heat sink. Finally, an exploration of various thermal-aware placement approaches for both the 2D and 3D stacked systems has been presented. Various thermal models have been developed and thermal control metrics have been extracted. An efficient thermal-aware application mapping algorithm for a 2D NoC has been presented. It has been shown that the proposed mapping algorithm reduces the effective area reeling under high temperatures when compared to the state of the art.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Amazonian region, the biggest rain forest of our planet, is known for its extraordinary biodiversity. Most of this diversity is still unexplored and new species of different taxa are regularly found there. In this region, as in most areas of the world, insects are some of the most abundant organisms. Therefore, studying this group is important to promote the conservation of these highly biodiverse ecosystems of the planet. Among insects, parasitoid wasps are especially interesting because they have potential for use as biodiversity indicators and biological control agents in agriculture and forestry. The parasitoid wasp family Ichneumonidae is one of the most species rich groups among the kingdom Animalia. This group is still poorly known in many areas of the world; the Amazonian region is a clear example of this situation. Ichneumonids have been thought to be species poor in Amazonia and other tropical areas. However, recent studies are suggesting that parasitoid wasps may be quite abundant in Amazonia and possibly in most tropical areas of the world. The aim of my doctoral thesis is to study the species richness and taxonomy of two of the best known ichneumonid subfamilies in the Neotropical region, Pimplinae and Rhyssinae. To do this I conducted two extensive sampling programs in the Peruvian Amazonia. I examined also a large number of Neotropical ichneumonids deposited to different natural history museums. According to the results of my thesis, the species richness of these parasitoids in the Amazonian region is considerably higher than previously reported. In my research, I firstly further develop the taxonomy of these parasitoids by describing many new species and reporting several new faunistic records (I, II, III). In this first part I focus on two genera (Xanthopimpla and Epirhyssa) which were thought to be rather species poor. My thesis demonstrates that these groups are actually rather species rich in the Amazonian region. Secondly, I concentrate on the species richness of these parasitoids in a global comparison showing that the Neotropical region and especially the Peruvian Amazonia is one of the most species rich areas of Pimpliformes ichneumonids (V). Furthermore, I demonstrate that with the data available to date no clear latitudinal gradient in species richness is visible. Thirdly, increasing the macroecological knowledge of these parasitoids I show that some previously unreported ichneumonid subfamilies are present in the Amazonian region (IV). These new insights and the results of the global comparison of ichneumonid inventories suggest that the previous belief of low diversity in the tropics is most likely related to a lack of sampling effort in the region. Overall, my research increases the knowledge of Neotropical ichneumonids highlighting the importance of Peruvian Amazonia as one of the diversity hotspots of parasitoid wasps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to various advantages such as flexibility, scalability and updatability, software intensive systems are increasingly embedded in everyday life. The constantly growing number of functions executed by these systems requires a high level of performance from the underlying platform. The main approach to incrementing performance has been the increase of operating frequency of a chip. However, this has led to the problem of power dissipation, which has shifted the focus of research to parallel and distributed computing. Parallel many-core platforms can provide the required level of computational power along with low power consumption. On the one hand, this enables parallel execution of highly intensive applications. With their computational power, these platforms are likely to be used in various application domains: from home use electronics (e.g., video processing) to complex critical control systems. On the other hand, the utilization of the resources has to be efficient in terms of performance and power consumption. However, the high level of on-chip integration results in the increase of the probability of various faults and creation of hotspots leading to thermal problems. Additionally, radiation, which is frequent in space but becomes an issue also at the ground level, can cause transient faults. This can eventually induce a faulty execution of applications. Therefore, it is crucial to develop methods that enable efficient as well as resilient execution of applications. The main objective of the thesis is to propose an approach to design agentbased systems for many-core platforms in a rigorous manner. When designing such a system, we explore and integrate various dynamic reconfiguration mechanisms into agents functionality. The use of these mechanisms enhances resilience of the underlying platform whilst maintaining performance at an acceptable level. The design of the system proceeds according to a formal refinement approach which allows us to ensure correct behaviour of the system with respect to postulated properties. To enable analysis of the proposed system in terms of area overhead as well as performance, we explore an approach, where the developed rigorous models are transformed into a high-level implementation language. Specifically, we investigate methods for deriving fault-free implementations from these models into, e.g., a hardware description language, namely VHDL.