33 resultados para granite sawing waste
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Puukuitulujitteisten muovikomposiittien käyttömäärät ovat maailmanlaajuisesti kasvaneet jatkuvasti viimeisen 15 vuoden aikana.Kasvun on ennustettu jatkuvan voimakkaana myös tulevaisuudessa. Diplomityön tavoitteena oli selvittää puukuitulujitteisten muovikomposiittimateriaalien soveltuvuus erääseen, mahdollisesti rakennusteollisuuden käyttöön tulevaan, tuotteeseen. Tutkittaviksi materiaaliyhdistelmiksi valittiin sekä kerta- että kestomuovin ja puu- jauhon seos. Puujauho oli koivupuista sahaus- ja hiontajätettä. Molemmissa tapauksissa puun osuus komposiitissa oli 30 p-%. Koekappaleiden valmistuksessakäytettiin koivupuisia muotteja, joihin materiaali annosteltiin. Kertamuovin japuujauhon seos kovettui huoneenlämmössä. Kestomuovin ja puujauhon seoksen sulatukseen käytettiin lämmitettävillä puristinlevyillä varustettua aihiopuristinta. Koekappaleille määritettiin taivutuslujuudet taivutuskokeen avulla. Koekappaleiden taivutuslujuuksia verrattiin mm. lattialastulevyn ja koivuliimalevyn arvoihin. Liimalevyn taivutuslujuus muihin verrattuna oli huomattavasti suurempi. Komposiittimateriaalista valmistettujen koekappaleiden taivutuslujuus oli lähellä lattia-lastulevyn tasoa, osittain jonkin verran parempikin. Diplomityössä saatujen tulosten perusteella voidaan todeta puukuitulujitteisilla muovikomposiiteilla olevan kehityspotentiaalia myös tutkimuskohteen tyyppisissä ratkaisuissa. Jatkotutkimusta tulisi kohdistaa ennen kaikkea kestomuovipohjaisen komposiittimateriaalinsuuntaan.
Resumo:
The main research problem of this thesis is to find out the means of promoting the recovery of packaging waste generated in thefast food industry. The recovery of packaging waste generated in the fast food industry is demanded by the packaging waste legislation and expected by the public. The means are revealed by the general factors influencing the recovery of packaging waste, analysed by a multidisciplinary literature review and a case study focusing on the packaging waste managementof McDonald's Oy operating in Finland. The existing solid waste infrastructure does not promote the recovery ofpackaging waste generated in the fast food industry. The theoretical recovery rate of the packaging waste is high, 93 %, while the actual recovery rate is only 29 % consisting of secondary packaging manufactured from cardboard. The total recovery potential of packaging waste is 64 %, resulting in 1 230 tonnes ofrecoverable packaging waste. The achievable recovery potential of 33 %, equalling 647 tonnes of packaging waste could be recovered, but is not recovered mainly because of non-working waste management practises. The theoretical recovery potential of 31 %, equalling 583 tonnes of packaging waste can not be recovered by the existing solid waste infrastructure because of the obscure status of commecial waste, the improper operation ofproducer organisations, and the municipal autonomy. The sorting experiment indicated that it is possible to reach the achievable recovery potential inthe existing solid waste infrastructure. The achievement is promoted by waste producer -oriented waste management practises. The theoretical recovery potential can be reached by increasing the consistency of the solid waste infrastructure through governmental action.
Resumo:
Työn tavoitteena oli vanerin tuotantoprosessin tehostaminen ja raaka-aineen käyttösuhteen parantaminen Schauman Wood Oy:n Kuopion vaneritehtaalla. Tuotannon pitkä läpimenoaika ja välivarastojen suuri määrä sitovat paljon pääomaa. Välivarastot ovat tuotannon kapeikkokohtien seurannaisia, koska yksittäisten konelinjojen kapasiteetti ei ole tasapainossa optimaaliseen materiaalin virtaukseen nähden. Teoriaosuus käsittelee valmistettavaa vanerituotetta, tuotantotaloutta, tuotannon- ja materiaalin ohjausta sekä Kuopion vaneritehtaan tuotantoprosessia, joiden avulla selvitään vanerin valmistukseen liittyviä asioita ja niiden yhteyksiä toisiinsa. Tutkimuksen kokeellisessa osassa poistettiin yksi työvaihe vanerin valmistusprosessista ja samalla kiinnitettiin suurta huomiota viilun valmistuksen mittatarkkuuteen. Vanerin liimauksessa aihion reunat jäävät epätasaisiksi, mikä johtuu viilujen mittavaihtelusta, ladontamenetelmästä ja ladonnan tarkkuudesta. Levyjen reunat puhdistetaan ja oikaistaan sahaamalla niistä pois 30 - 50 mm leveät suikaleet. Useasti levyn ensimmäinen sahaus, eli niin sanottu karsintasahaus, on valmisteleva toimenpide tulevaa jatkokäsittelyä varten. Karsintasahauksen poistamisella saavutetaan nopeampi läpimenoaika, pienempi välivarasto viimeistelyosastolla sekä puumateriaalin säästö jättämällä reunojen oikaisu pois.
Resumo:
Diplomityön tavoitteena oli kehittää kohdeyrityksen puuraaka-aineen käyttöä. Kohdeyritys on massiivipuuparkettia valmistava yritys, jonka tuotantotoiminta oli diplomityön aloitushetkellä noin vuoden ikäinen. Parkettituotannossa uutta tekniikkaa hyödyntävä valmistuslinja sekä uuden tuotantolaitoksen käytännön ongelmat ovat vaatineet henkilöstöltä paljon aikaa. Puuraaka-aineen hankintaan ja käyttöön liittyville tutkimus- ja kehitystoimille olikin yrityksessä selvä tarve. Projektin aikana tutkittiin erilaisin kokein puuraaka-aineen kulutusta parketin valmistuksen eri vaiheissa. Kokeissa keskityttiin materiaalin kulutuksen kannalta kriittisimpiin työvaiheisiin, jotka kohdeyrityksen tuotannossa ovat vannesahaus, jyrsintä, särmäys ja laatulajittelu. Lisäksi suoritettiin kuivauskokeita tuotteessa käytettävillä erityyppisillä puumateriaaleilla. Suoritetuilla kokeilla saatiin selville työvaiheiden puun kulutus sekä merkittävimmät syyt eri vaiheissa syntyvälle materiaalihukalle. Tulosten pohjalta on esitetty tekijöitä, joihin keskittymällä yrityksen puuraaka-aineen hankintaa ja käyttöä voidaan tehostaa. Työn aikana kehitettiin myös erityyppisten puuraaka-aineiden vastaanottoon ja laadun seurantaan liittyvää dokumentointia.
Resumo:
No 2/2008, sivu 8.
Resumo:
The general striving to bring down the number of municipal landfills and to increase the reuse and recycling of waste-derived materials across the EU supports the debates concerning the feasibility and rationality of waste management systems. Substantial decrease in the volume and mass of landfill-disposed waste flows can be achieved by directing suitable waste fractions to energy recovery. Global fossil energy supplies are becoming more and more valuable and expensive energy sources for the mankind, and efforts to save fossil fuels have been made. Waste-derived fuels offer one potential partial solution to two different problems. First, waste that cannot be feasibly re-used or recycled is utilized in the energy conversion process according to EU’s Waste Hierarchy. Second, fossil fuels can be saved for other purposes than energy, mainly as transport fuels. This thesis presents the principles of assessing the most sustainable system solution for an integrated municipal waste management and energy system. The assessment process includes: · formation of a SISMan (Simple Integrated System Management) model of an integrated system including mass, energy and financial flows, and · formation of a MEFLO (Mass, Energy, Financial, Legislational, Other decisionsupport data) decision matrix according to the selected decision criteria, including essential and optional decision criteria. The methods are described and theoretical examples of the utilization of the methods are presented in the thesis. The assessment process involves the selection of different system alternatives (process alternatives for treatment of different waste fractions) and comparison between the alternatives. The first of the two novelty values of the utilization of the presented methods is the perspective selected for the formation of the SISMan model. Normally waste management and energy systems are operated separately according to the targets and principles set for each system. In the thesis the waste management and energy supply systems are considered as one larger integrated system with one primary target of serving the customers, i.e. citizens, as efficiently as possible in the spirit of sustainable development, including the following requirements: · reasonable overall costs, including waste management costs and energy costs; · minimum environmental burdens caused by the integrated waste management and energy system, taking into account the requirement above; and · social acceptance of the selected waste treatment and energy production methods. The integrated waste management and energy system is described by forming a SISMan model including three different flows of the system: energy, mass and financial flows. By defining the three types of flows for an integrated system, the selected factor results needed in the decision-making process of the selection of waste management treatment processes for different waste fractions can be calculated. The model and its results form a transparent description of the integrated system under discussion. The MEFLO decision matrix has been formed from the results of the SISMan model, combined with additional data, including e.g. environmental restrictions and regional aspects. System alternatives which do not meet the requirements set by legislation can be deleted from the comparisons before any closer numerical considerations. The second novelty value of this thesis is the three-level ranking method for combining the factor results of the MEFLO decision matrix. As a result of the MEFLO decision matrix, a transparent ranking of different system alternatives, including selection of treatment processes for different waste fractions, is achieved. SISMan and MEFLO are methods meant to be utilized in municipal decision-making processes concerning waste management and energy supply as simple, transparent and easyto- understand tools. The methods can be utilized in the assessment of existing systems, and particularly in the planning processes of future regional integrated systems. The principles of SISMan and MEFLO can be utilized also in other environments, where synergies of integrating two (or more) systems can be obtained. The SISMan flow model and the MEFLO decision matrix can be formed with or without any applicable commercial or free-of-charge tool/software. SISMan and MEFLO are not bound to any libraries or data-bases including process information, such as different emission data libraries utilized in life cycle assessments.
Resumo:
The environmental impact of landfill is a growing concern in waste management practices. Thus, assessing the effectiveness of the solutions implemented to alter the issue is of importance. The objectives of the study were to provide an insight of landfill advantages, and to consolidate landfill gas importance among others alternative fuels. Finally, a case study examining the performances of energy production from a land disposal at Ylivieska was carried out to ascertain the viability of waste to energy project. Both qualitative and quantitative methods were applied. The study was conducted in two parts; the first was the review of literatures focused on landfill gas developments. Specific considerations were the conception of mechanism governing the variability of gas production and the investigation of mathematical models often used in landfill gas modeling. Furthermore, the analysis of two main distributed generation technologies used to generate energy from landfill was carried out. The review of literature revealed a high influence of waste segregation and high level of moisture content for waste stabilization process. It was found that the enhancement in accuracy for forecasting gas rate generation can be done with both mathematical modeling and field test measurements. The result of the case study mainly indicated the close dependence of the power output with the landfill gas quality and the fuel inlet pressure.
Resumo:
Among the numerous approaches to food waste treatment, the food waste disposers method (FWDs), as a newcomer, has become slowly accepted by the general public owing to the worries about its impact on the existing sewage system. This paper aims to justify the role of FWDs in the process of urbanization in order to better prepare a city to take good care of the construction of its infrastructure and the solid waste treatment. Both the literatures and the case study help to confirm that FWDs has no negative effects on the wastewater treatment plant and it is also environmental friendly by reducing the greenhouse gas emissions. In the case study, the Lappeenranta waste water treatment plant has been selected in order to figure out the possible changes to a WWTP following the integration of FWDs: the observation shows only minor changes take place in a WWTP, in case of 25% application, like BOD up 7%, TSS up 6% and wastewater flowrate up 6%, an additional sludge production of 200 tons per year and the extra yield of methane up to 10000m3 per year; however, when the utilization rate of FWD is over 75%, BOD, TSS, and wastewater flowrate will experience more significant changes, thus exerting much pressure on the existing WWTP. FWDs can only be used in residential areas or cities equipped with consummate drainage network within the service sphere of WWTP, therefore, the relevant authority or government department should regulate the installation frequency of FWDs, while promoting the accessory application of FWDs. In the meanwhile, WWTP should improve their treatment process in order to expand their capacity for sludge treatment so as to stay in line with the future development of urban waste management.
Resumo:
Paper presented in ISA RC23 meeting, Gothenburg July 16th 2010
Resumo:
The update of the Finnish legislation concerning waste was unavoidable, to comply with the European Union (EU) requirements defined in the EU-Directive on Waste. The new waste law updates were enacted into the Finnish legislation on the 11.03.2011 and targeted for applicability by the 11.03.2012. This thesis investigates the implications of the new amendments to the waste legislation from the perspective of green sand foundries. The investigations are conducted by comparing two of Componenta’s green sand foundries and evaluating their waste streams. Additionally, the impacts of legislation amendments are critiqued on their environmental and economic aspects. The study’s comparison of waste fractions at the two foundries reveals that sand is dominant in absolute tonnage and costs. The increments of waste taxes forces foundries to focus on waste management, recycling and disposing. The new legislation’s promotion of material efficiency, also guides foundries towards the prevention of waste. A potential preventive measure is to regenerate waste sand resulting to cost savings on both raw-materials and waste management. However, the lack of absolute targets for waste prevention or recycling rates discourages the interests towards creating or adopting new technologies and methods for the waste handling.
Resumo:
Marine litter is an international environmental problem that causes considerable costs to coastal communities and the fishing industry. Several international and national treaties and regulations have provisions to marine litter and forbid disposal of waste into the sea. However, none of these regulations state a responsibility for public authorities to recover marine litter from the sea, like they do for marine litter that washes up on public beaches. In a financial evaluation of a value chain for marine litter incineration it was found out that the total costs of waste incineration are approximately 100 ─ 200 % higher than waste fees offered by waste contractors of ports. The high costs of incineration are derived from the high calorific value of marine litter and therefore a high incineration cost for the waste, and long distances between ports that are taking part in a project for marine litter recovery from the sea and an Energy-from-Waste (EfW) facility. This study provides a possible solution to diverting marine litter from landfills to more environmentally sustainable EfW use by using a public-private partnership (PPP) framework. PPP would seem to fit as a suitable cooperative approach for answering problems of current marine litter disposal in theory. In the end it is up to the potential partners of this proposed PPP to decide whether the benefits of cooperation justify the required efforts.
Resumo:
The aim of this report is to describe the current status of the waste-to-energy chain in the province of Northern Savonia in Finland. This work is part of the Baltic Sea Region Programme project Remowe-Regional Mobilizing of Sustainable Waste-to-Energy Production (2009-2012). Partnering regions across Baltic Sea countries have parallelly investigated the current status, bottle-necks and needs for development in their regions. Information about the current status is crucial for the further work within the Remowe project, e.g. in investigating the possible future status in target regions. Ultimate result from the Northern Savonia point of view will be a regional model which utilizes all available information and facilitates decision-making concerning energy utilization of waste. The report contains information on among others: - waste management system (sources, amounts, infrastructure) - energy system (use, supply, infrastructure) - administrative structure and legislation - actors and stakeholders in the waste-to-energy field, including interest and development ideas The current status of the regions will be compared in a separate Remowe report, with the focus on finding best practices that could be transferred among the regions. In this report, the current status has been defined as 2006-2009. In 2009, the municipal waste amount per capita was 479 kg/inhabitant in Finland. Industrial waste amounted 3550 kg/inhabitant, respectively. The potential bioenergy from biodegradable waste amounts 1 MWh/inhabitant in Northern Savonia. This figure includes animal manure, crops that would be suitable for energy use, sludge from municipal sewage treatment plants and separately collected biowaste. A key strategy influencing also to Remowe work is the waste plan for Eastern Finland. Currently there operate two digestion plants in Northern Savonia: Lehtoniemi municipal sewage treatment sludge digestion plant of Kuopion Vesi and the farm-scale research biogas plant of Agrifood Research Finland in Maaninka. Moreover, landfill gas is collected to energy use from Heinälamminrinne waste management centre and Silmäsuo closed landfill site, both belonging to Jätekukko Oy. Currently there is no thermal utilization of waste in Northern Savonia region. However, Jätekukko Oy is pretreating mixed waste and delivering refuse derived fuel (RDF) to Southern Finland to combustion. There is a strong willingness among seven regional waste management companies in Eastern Finland to build a waste incineration plant to Riikinneva waste management centre near city of Varkaus. The plant would use circulating fluidized bed (CFB) boiler. This would been a clear boost in waste-to-energy utilization in Northern Savonia and in many surrounding regions.
Resumo:
Waste incineration plants are increasingly established in China. A low heating value and high moisture content, due to a large proportion of biowaste in the municipal solid waste (MSW), can be regarded as typical characteristics of Chinese MSW. Two incineration technologies have been mainly established in China: stoker grate and circular fluidized bed (CFB). Both of them are designed to incinerate mixed MSW. However, there have been difficulties to reach the sufficient temperature in the combustion process due to the low heating value of the MSW. That is contributed to the usage of an auxiliary fossil fuel, which is often used during the whole incineration process. The objective of this study was to design alternative Waste-to-energy (WTE) scenarios for existing WTE plants with the aim to improve the material and energy efficiency as well as the feasibility of the plants. Moreover, the aim of this thesis was to find the key factors that affect to the feasibility of the scenarios. Five different WTE plants were selected as study targets. The necessary data for calculation was gained from literature as well as received from the operators of the target WTE plants. The created scenarios were based on mechanical-biological treatment (MBT) technologies, in which the produced solid recovered fuel (SRF) was fed as an auxiliary fuel into a WTE plant replacing the fossil fuel. The mechanically separated biowaste was treated either in an anaerobic digestion (AD) plant, a biodrying plant, a thermal drying plant, or a combined AD plant + thermal drying plant. An interactive excel spreadsheet based computation tool was designed to estimate the viability of the scenarios in different WTE cases. The key figures of the improved material and energy efficiency, such as additional electricity generated and avoided waste for landfill, were got as results. Furthermore, economic indicators such as annual profits (or costs), payback period, and internal rate of return (IRR) were gained as results. The results show that the AD scenario was the most profitable in most of the cases. The current heating value of MSW and the tipping fee for the received MSW appeared as the most important factor in terms of feasibility.