9 resultados para glacial drift deposits
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
In this thesis, cleaning of ceramic filter media was studied. Mechanisms of fouling and dissolution of iron compounds, as well as methods for cleaning ceramic membranes fouled by iron deposits were studied in the literature part. Cleaning agents and different methods were closer examined in the experimental part of the thesis. Pyrite is found in the geologic strata. It is oxidized to form ferrous ions Fe(II) and ferric ions Fe(III). Fe(III) is further oxidized in the hydrolysis to form ferric hydroxide. Hematite and goethite, for instance, are naturally occurring iron oxidesand hydroxides. In contact with filter media, they can cause severe fouling, which common cleaning techniques competent enough to remove. Mechanisms for the dissolution of iron oxides include the ligand-promoted pathway and the proton-promoted pathway. The dissolution can also be reductive or non-reductive. The most efficient mechanism is the ligand-promoted reductive mechanism that comprises two stages: the induction period and the autocatalytic dissolution.Reducing agents(such as hydroquinone and hydroxylamine hydrochloride), chelating agents (such as EDTA) and organic acids are used for the removal of iron compounds. Oxalic acid is the most effective known cleaning agent for iron deposits. Since formulations are often more effective than organic acids, reducing agents or chelating agents alone, the citrate¿bicarbonate¿dithionite system among others is well studied in the literature. The cleaning is also enhanced with ultrasound and backpulsing.In the experimental part, oxalic acid and nitric acid were studied alone andin combinations. Also citric acid and ascorbic acid among other chemicals were tested. Soaking experiments, experiments with ultrasound and experiments for alternative methods to apply the cleaning solution on the filter samples were carried out. Permeability and ISO Brightness measurements were performed to examine the influence of the cleaning methods on the samples. Inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis of the solutions was carried out to determine the dissolved metals.
Resumo:
kuv., 23 x 16 cm
Resumo:
kuv., 23 x 16 cm
Resumo:
kuv., 23 x 16 cm
Resumo:
Different types of laterally extensive sand- and gravel-dominated deposits, up to several tens of metres thick, were investigated in the Suupohja area of western Finland. The studied sediments were deposited in glacial, ice-marginal, glaciofluvial, sea or lake, littoral and terrestrial environments during several glacial-non-glacial cycles. Seventeen pre-Late Weichselian and three Late Weichselian/Holocene sedimentary units were identified. These were divided into ten formally and two informally defined formations that were together termed the Suupohja Group. Every unit are nevertheless not detectable throughout the study area. The informally defined “Karhukangas lower deposits” represent the lowest units in the Suupohja Group. The Karhukangas lower deposits with 5 till units, 3 glaciolacustrine/-marine units and 2 sand units, were interpreted as having been deposited during possibly four glacial-non-glacial cycles before the Late Pleistocene Subepoch (MIS 6 or earlier). The Kankalo Sand above the Karhukangas lower deposits comprises glaciofluvial and aeolian sands of Late Saalian, Eemian or Early Weichselian origin (MIS 6–MIS 5c). The Kariluoma Till above the Kankalo Sand was possibly deposited during the Late Saalian glacial advance, although an Early Weichselian origin is also possible. The Harrinkangas Formation, with glaciofluvial and quiet-water sediments, is interpreted as having been deposited during the Late Saalian and Eemian Stages (MIS 6–MIS 5e). The uppermost units in the deposits studied, the Kodesjärvi Formation (shore deposit), Isojoki Sand (aeolian), Rävåsen Formation (glaciofluvial), Vanhakylä Formation (shore line deposit), Dagsmark Till and Kauhajoki Till, were deposited during the Weichselian Stage (MIS 5d–MIS 2). In addition, Early Holocene (MIS 1) eskers without till cover were informally termed the “Holocene esker deposits”. The Lumikangas Formation represents gravelly shore deposits formed in the Holocene Epoch, when these areas last emerged from the sea. The first Weichselian ice expansion possibly reached the western part of Suupohja in the Early Weichselian Substage (MIS 5d?), but it did not expand further to the east. The second Weichselian glaciation of relatively short duration occupied the southern part of Finland in the later part of Middle Weichselian (MIS 3). Thus, the southern half of the country remained ice-free for the majority (~65–75%) of the Weichselian Stage. Instead, both humid temperate and periglacial conditions alternated. In the initial part of Middle Weichselian, this area was partly submerged, which indicates eastward expansion of the Scandinavian ice sheet(s), depressing the lithosphere. The exceptionally thick sediment cover, multiple lithofacies, relict landscape and preserved preglacially weathered bedrock are evidence of weak glacial erosion in the Suupohja area during the latest as well as earlier glaciations, making this area one of the key areas in Quaternary research.
Resumo:
De douze dessins dʹaprès nature.
Resumo:
The aim of this master's thesis is to develop a two-dimensional drift-di usion model, which describes charge transport in organic solar cells. The main bene t of a two-dimensional model compared to a one-dimensional one is the inclusion of the nanoscale morphology of the active layer of a bulk heterojunction solar cell. The developed model was used to study recombination dynamics at the donor-acceptor interface. In some cases, it was possible to determine e ective parameters, which reproduce the results of the two-dimensional model in the one-dimensional case. A summary of the theory of charge transport in semiconductors was presented and discussed in the context of organic materials. Additionally, the normalization and discretization procedures required to nd a numerical solution to the charge transport problem were outlined. The charge transport problem was solved by implementing an iterative scheme called successive over-relaxation. The obtained solution is given as position-dependent electric potential, free charge carrier concentrations and current densities in the active layer. An interfacial layer, separating the pure phases, was introduced in order to describe charge dynamics occurring at the interface between the donor and acceptor. For simplicity, an e ective generation of free charge carriers in the interfacial layer was implemented. The pure phases simply act as transport layers for the photogenerated charges. Langevin recombination was assumed in the two-dimensional model and an analysis of the apparent recombination rate in the one-dimensional case is presented. The recombination rate in a two-dimensional model is seen to e ectively look like reduced Langevin recombination at open circuit. Replicating the J-U curves obtained in the two-dimensional model is, however, not possible by introducing a constant reduction factor in the Langevin recombination rate. The impact of an acceptor domain in the pure donor phase was investigated. Two cases were considered, one where the acceptor domain is isolated and another where it is connected to the bulk of the acceptor. A comparison to the case where no isolated domains exist was done in order to quantify the observed reduction in the photocurrent. The results show that all charges generated at the isolated domain are lost to recombination, but the domain does not have a major impact on charge transport. Trap-assisted recombination at interfacial trap states was investigated, as well as the surface dipole caused by the trapped charges. A theoretical expression for the ideality factor n_id as a function of generation was derived and shown to agree with simulation data. When the theoretical expression was fitted to simulation data, no interface dipole was observed.