6 resultados para fuzzy genetic algorithms

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Työssä esitetään geneettisten algoritmien käyttöön perustuva hissiohjausjärjestelmä, jossa ohjauspaatosten tekemisessä hyödynnetään tarkkoja matkustajatietoja. Tämä hissiohjausjärjestelmä soveltuu käytettäväksi muun muassa kohde-allokointiin perus-tuvassa hissijärjestelmässä, jossa matkustajat antavat hissikutsun yhteydessä kohde-kerrostietonsa. Esitetty ohjausjärjestelmä soveltuu käytettäväksi ulkokutsun välittömään tai jatkuvaan allokointiin perustuvassa hissijärjestelmässä. Työn kirjallisessa osuudessa esitetään parannuksia aiemmin esitettyihin hissiohjausjärjestelmiin ja käydään läpi erilaisia kohde-allokointiin perustuvia hissijärjestelmiä. Työssä kuvataan uusi matkustaja-ohjaustapa, joka vähentää matkustajan tekemän hissikutsun välittömään palveluun liittyviä hissiohjausongelmia. Tarkkoja matkustajatietoja hyödyntämällä hissijärjestelmä kykenee sekä tarjoamaan matkustajille yksilöllistä palvelua että kuljettamaan matkustajia tehokkaasti.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tämä diplomityö on tehty Andritz Oy:lle Washers & Filters tuoteryhmään. Työ on osa pienten sellupesureiden tuotekehitysprojektia. Tavoitteena on vertailla olemassa olevaa tuotekehitysaineistoa ja tuoda esiin suunnitteluprosessi, jolla DD – sellupesurin osien rakenteita voidaan järjestelmällisesti kehittää. Diplomityössä tutkittuja osia ovat tiiviste–elementti, päätypalkki ja rumpu. Tiiviste–elementtejä vertailtiin olemassa olevan tuotekehitysaineiston osalta, sekä tutkittiin geneettisiin algoritmeihin pohjautuvan topologian optimoinnin soveltuvuutta tiiviste-elementin suunnitteluun. Päätypalkin ja rummun optimaaliset geometriat selvitettiin geneettisiä algoritmejä hyödyntävällä topologisella optimoinnilla. Optimaalisten topologioiden perusteella suunniteltiin valmistettavissa olevat rakenteet joiden ainevahvuudet määrättiin alustavasti vakion variointiin perustuvalla optimoinnilla. Tällä menettelyllä saatiin päätypalkista ja rummusta aikaiseksi aikaisempaa kevyemmät rakenteet. Topologian optimointi huomattiin soveltuvan rakenteisiin, joiden kuormitus- ja kiinnitystiedot ovat yksiselitteisesti määrätyt.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work mathematical programming models for structural and operational optimisation of energy systems are developed and applied to a selection of energy technology problems. The studied cases are taken from industrial processes and from large regional energy distribution systems. The models are based on Mixed Integer Linear Programming (MILP), Mixed Integer Non-Linear Programming (MINLP) and on a hybrid approach of a combination of Non-Linear Programming (NLP) and Genetic Algorithms (GA). The optimisation of the structure and operation of energy systems in urban regions is treated in the work. Firstly, distributed energy systems (DES) with different energy conversion units and annual variations of consumer heating and electricity demands are considered. Secondly, district cooling systems (DCS) with cooling demands for a large number of consumers are studied, with respect to a long term planning perspective regarding to given predictions of the consumer cooling demand development in a region. The work comprises also the development of applications for heat recovery systems (HRS), where paper machine dryer section HRS is taken as an illustrative example. The heat sources in these systems are moist air streams. Models are developed for different types of equipment price functions. The approach is based on partitioning of the overall temperature range of the system into a number of temperature intervals in order to take into account the strong nonlinearities due to condensation in the heat recovery exchangers. The influence of parameter variations on the solutions of heat recovery systems is analysed firstly by varying cost factors and secondly by varying process parameters. Point-optimal solutions by a fixed parameter approach are compared to robust solutions with given parameter variation ranges. In the work enhanced utilisation of excess heat in heat recovery systems with impingement drying, electricity generation with low grade excess heat and the use of absorption heat transformers to elevate a stream temperature above the excess heat temperature are also studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, a classi cation problem in predicting credit worthiness of a customer is tackled. This is done by proposing a reliable classi cation procedure on a given data set. The aim of this thesis is to design a model that gives the best classi cation accuracy to e ectively predict bankruptcy. FRPCA techniques proposed by Yang and Wang have been preferred since they are tolerant to certain type of noise in the data. These include FRPCA1, FRPCA2 and FRPCA3 from which the best method is chosen. Two di erent approaches are used at the classi cation stage: Similarity classi er and FKNN classi er. Algorithms are tested with Australian credit card screening data set. Results obtained indicate a mean classi cation accuracy of 83.22% using FRPCA1 with similarity classi- er. The FKNN approach yields a mean classi cation accuracy of 85.93% when used with FRPCA2, making it a better method for the suitable choices of the number of nearest neighbors and fuzziness parameters. Details on the calibration of the fuzziness parameter and other parameters associated with the similarity classi er are discussed.