49 resultados para fluid flow

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diplomityön tavoitteena oli tarkastella numeerisen virtauslaskennan avulla virtaukseen liittyviä ilmiöitä ja kaasun dispersiota. Diplomityön sisältö on jaettu viiteen osaan; johdantoon, teoriaan, katsaukseen virtauksen mallinnukseen huokoisessa materiaalissa liittyviin tutkimusselvityksiin, numeeriseen mallinnukseen sekä tulosten esittämiseen ja johtopäätöksiin. Diplomityön alussa kiinnitettiin huomiota erilaisiin kokeellisiin, numeerisiin ja teoreettisiin mallinnusmenetelmiin, joilla voidaan mallintaa virtausta huokoisessa materiaalissa. Kirjallisuusosassa tehtiin katsaus aikaisemmin julkaistuihin puoliempiirisiin ja empiirisiin tutkimusselvityksiin, jotka liittyvät huokoisen materiaalin aiheuttamaan painehäviöön. Numeerisessa virtauslaskenta osassa rakennettiin ja esitettiin huokoista materiaalia kuvaavat numeeriset mallit käyttäen kaupallista FLUENT -ohjelmistoa. Työn lopussa arvioitiin teorian, numeerisen virtauslaskennan ja kokeellisten tutkimusselvitysten tuloksia. Kolmiulotteisen huokoisen materiaalinnumeerisessa mallinnuksesta saadut tulokset vaikuttivat lupaavilta. Näiden tulosten perusteella tehtiin suosituksia ajatellen tulevaa virtauksen mallinnusta huokoisessa materiaalissa. Osa tässä diplomityössä esitetyistä tuloksista tullaan esittämään 55. Kanadan Kemiantekniikan konferenssissa Torontossa 1619 Lokakuussa 2005. ASME :n kansainvälisessä tekniikan alan julkaisussa. Työ on hyväksytty esitettäväksi esitettäväksi laskennallisen virtausmekaniikan (CFD) aihealueessa 'Peruskäsitteet'. Lisäksi työn yksityiskohtaiset tulokset tullaan lähettämään myös CES:n julkaisuun.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to study flow properties at T-junction of pipe, pressure loss suffered by the flow after passing through T-junction and to study reliability of the classical engineering formulas used to find head loss for T-junction of pipes. In this we have compared our results with CFD software packages with classical formula and made an attempt to determine accuracy of the classical formulas. In this work we have studies head loss in T-junction of pipes with various inlet velocities, head loss in T-junction of pipes when the angle of the junction is slightly different from 90 degrees and T-junction with different area of cross-section of the main pipe and branch pipe. In this work we have simulated the flow at T-junction of pipe with FLUENT and Comsol Multiphysics and observed flow properties inside the T-junction and studied the head loss suffered by fluid flow after passing through the junction. We have also compared pressure (head) losses obtained by classical formulas by A. Vazsonyi and Andrew Gardel and formulas obtained by assuming T-junction as combination of other pipe components and observations obtained from software experiments. One of the purposes of this study is also to study change in pressure loss with change in angle of T-junction. Using software we can have better view of flow inside the junction and study turbulence, kinetic energy, pressure loss etc. Such simulations save a lot of time and can be performed without actually doing the experiment. There were no real life experiments made, the results obtained completely rely on accuracy of software and numerical methods used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the work is to study fluid flow behavior through a pinch valve and to estimate the flow coefficient (KV ) at different opening positions of the valve. The flow inside a compressed valve is more complex than in a straight pipe, and it is one of main topics of interest for engineers in process industry. In the present work, we have numerically simulated compressed valve flow at different opening positions. In order to simulate the flow through pinch valve, several models of the elastomeric valve tube (pinch valve tube) at different opening positions were constructed in 2D-axisymmetric and 3D geometries. The numerical simulations were performed with the CFD packages; ANSYS FLUENT and ANSYS CFX by using parallel computing. The distributions of static pressure, velocity and turbulent kinetic energy have been studied at different opening positions of the valve in both 2D-axisymmetric and 3D experiments. The flow coefficient (KV ) values have been measured at different valve openings and are compared between 2D-axisymmetric and 3D simulation results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydraulic head is distributed through a medium with porous aspect. The analysis of hydraulic head from one point to another is used by the Richard's equation. This equation is equivalent to the groundwater ow equation that predicts the volumetric water contents. COMSOL 3.5 is used for computation applying Richard's equation. A rectangle of 100 meters of length and 10 meters of large (depth) with 0,1 m/s fl ux of inlet as source of our fl uid is simulated. The domain have Richards' equation model in two dimension (2D). Hydraulic head increases proportional with moisture content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bedrock of old crystalline cratons is characteristically saturated with brittle structures formed during successive superimposed episodes of deformation and under varying stress regimes. As a result, the crust effectively deforms through the reactivation of pre-existing structures rather than by through the activation, or generation, of new ones, and is said to be in a state of 'structural maturity'. By combining data from Olkiluoto Island, southwestern Finland, which has been investigated as the potential site of a deep geological repository for high-level nuclear waste, with observations from southern Sweden, it can be concluded that the southern part of the Svecofennian shield had already attained structural maturity during the Mesoproterozoic era. This indicates that the phase of activation of the crust, i.e. the time interval during which new fractures were generated, was brief in comparison to the subsequent reactivation phase. Structural maturity of the bedrock was also attained relatively rapidly in Namaqualand, western South Africa, after the formation of first brittle structures during Neoproterozoic time. Subsequent brittle deformation in Namaqualand was controlled by the reactivation of pre-existing strike-slip faults.In such settings, seismic events are likely to occur through reactivation of pre-existing zones that are favourably oriented with respect to prevailing stresses. In Namaqualand, this is shown for present day seismicity by slip tendency analysis, and at Olkiluoto, for a Neoproterozoic earthquake reactivating a Mesoproterozoic fault. By combining detailed field observations with the results of paleostress inversions and relative and absolute time constraints, seven distinctm superimposed paleostress regimes have been recognized in the Olkiluoto region. From oldest to youngest these are: (1) NW-SE to NNW-SSE transpression, which prevailed soon after 1.75 Ga, when the crust had sufficiently cooled down to allow brittle deformation to occur. During this phase conjugate NNW-SSE and NE-SW striking strike-slip faults were active simultaneous with reactivation of SE-dipping low-angle shear zones and foliation planes. This was followed by (2) N-S to NE-SW transpression, which caused partial reactivation of structures formed in the first event; (3) NW-SE extension during the Gothian orogeny and at the time of rapakivi magmatism and intrusion of diabase dikes; (4) NE-SW transtension that occurred between 1.60 and 1.30 Ga and which also formed the NW-SE-trending Satakunta graben located some 20 km north of Olkiluoto. Greisen-type veins also formed during this phase. (5) NE-SW compression that postdates both the formation of the 1.56 Ga rapakivi granites and 1.27 Ga olivine diabases of the region; (6) E-W transpression during the early stages of the Mesoproterozoic Sveconorwegian orogeny and which also predated (7) almost coaxial E-W extension attributed to the collapse of the Sveconorwegian orogeny. The kinematic analysis of fracture systems in crystalline bedrock also provides a robust framework for evaluating fluid-rock interaction in the brittle regime; this is essential in assessment of bedrock integrity for numerous geo-engineering applications, including groundwater management, transient or permanent CO2 storage and site investigations for permanent waste disposal. Investigations at Olkiluoto revealed that fluid flow along fractures is coupled with low normal tractions due to in-situ stresses and thus deviates from the generally accepted critically stressed fracture concept, where fluid flow is concentrated on fractures on the verge of failure. The difference is linked to the shallow conditions of Olkiluoto - due to the low differential stresses inherent at shallow depths, fracture activation and fluid flow is controlled by dilation due to low normal tractions. At deeper settings, however, fluid flow is controlled by fracture criticality caused by large differential stress, which drives shear deformation instead of dilation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis work deals with a mathematical description of flow in polymeric pipe and in a specific peristaltic pump. This study involves fluid-structure interaction analysis in presence of complex-turbulent flows treated in an arbitrary Lagrangian-Eulerian (ALE) framework. The flow simulations are performed in COMSOL 4.4, as 2D axial symmetric model, and ABAQUS 6.14.1, as 3D model with symmetric boundary conditions. In COMSOL, the fluid and structure problems are coupled by monolithic algorithm, while ABAQUS code links ABAQUS CFD and ABAQUS Standard solvers with single block-iterative partitioned algorithm. For the turbulent features of the flow, the fluid model in both codes is described by RNG k-ϵ. The structural model is described, on the basis of the pipe material, by Elastic models or Hyperelastic Neo-Hookean models with Rayleigh damping properties. In order to describe the pulsatile fluid flow after the pumping process, the available data are often defective for the fluid problem. Engineering measurements are normally able to provide average pressure or velocity at a cross-section. This problem has been analyzed by McDonald's and Womersley's work for average pressure at fixed cross section by Fourier analysis since '50, while nowadays sophisticated techniques including Finite Elements and Finite Volumes exist to study the flow. Finally, we set up peristaltic pipe simulations in ABAQUS code, by using the same model previously tested for the fl uid and the structure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis is focused on process intensification. Several significant problems and applications of this theme are covered. Process intensification is nowadays one of the most popular trends in chemical engineering and attempts have been made to develop a general, systematic methodology for intensification. This seems, however, to be very difficult, because intensified processes are often based on creativity and novel ideas. Monolith reactors and microreactors are successful examples of process intensification. They are usually multichannel devices in which a proper feed technique is important for creating even fluid distribution into the channels. Two different feed techniques were tested for monoliths. In the first technique a shower method was implemented by means of perforated plates. The second technique was a dispersion method using static mixers. Both techniques offered stable operation and uniform fluid distribution. The dispersion method enabled a wider operational range in terms of liquid superficial velocity. Using dispersion method, a volumetric gas-liquid mass transfer coefficient of 2 s-1 was reached. Flow patterns play a significant role in terms of the mixing performance of micromixers. Although the geometry of a T-mixer is simple, channel configurations and dimensions had a clear effect on mixing efficiency. The flow in the microchannel was laminar, but the formation of vortices promoted mixing in micro T-mixers. The generation of vortices was dependent on the channel dimensions, configurations and flow rate. Microreactors offer a high ratio of surface area to volume. Surface forces and interactions between fluids and surfaces are, therefore, often dominant factors. In certain cases, the interactions can be effectively utilised. Different wetting properties of solid materials (PTFE and stainless steel) were applied in the separation of immiscible liquid phases. A micro-scale plate coalescer with hydrophilic and hydrophobic surfaces was used for the continuous separation of organic and aqueous phases. Complete phase separation occurred in less than 20 seconds, whereas the separation time by settling exceeded 30 min. Fluid flows can be also intensified in suitable conditions. By adding certain additives into turbulent fluid flow, it was possible to reduce friction (drag) by 40 %. Drag reduction decreases frictional pressure drop in pipelines which leads to remarkable energy savings and decreases the size or number of pumping facilities required, e.g., in oil transport pipes. Process intensification enables operation often under more optimal conditions. The consequent cost savings from reduced use of raw materials and reduced waste lead to greater economic benefits in processing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is an increasing reliance on computers to solve complex engineering problems. This is because computers, in addition to supporting the development and implementation of adequate and clear models, can especially minimize the financial support required. The ability of computers to perform complex calculations at high speed has enabled the creation of highly complex systems to model real-world phenomena. The complexity of the fluid dynamics problem makes it difficult or impossible to solve equations of an object in a flow exactly. Approximate solutions can be obtained by construction and measurement of prototypes placed in a flow, or by use of a numerical simulation. Since usage of prototypes can be prohibitively time-consuming and expensive, many have turned to simulations to provide insight during the engineering process. In this case the simulation setup and parameters can be altered much more easily than one could with a real-world experiment. The objective of this research work is to develop numerical models for different suspensions (fiber suspensions, blood flow through microvessels and branching geometries, and magnetic fluids), and also fluid flow through porous media. The models will have merit as a scientific tool and will also have practical application in industries. Most of the numerical simulations were done by the commercial software, Fluent, and user defined functions were added to apply a multiscale method and magnetic field. The results from simulation of fiber suspension can elucidate the physics behind the break up of a fiber floc, opening the possibility for developing a meaningful numerical model of the fiber flow. The simulation of blood movement from an arteriole through a venule via a capillary showed that the model based on VOF can successfully predict the deformation and flow of RBCs in an arteriole. Furthermore, the result corresponds to the experimental observation illustrates that the RBC is deformed during the movement. The concluding remarks presented, provide a correct methodology and a mathematical and numerical framework for the simulation of blood flows in branching. Analysis of ferrofluids simulations indicate that the magnetic Soret effect can be even higher than the conventional one and its strength depends on the strength of magnetic field, confirmed experimentally by Völker and Odenbach. It was also shown that when a magnetic field is perpendicular to the temperature gradient, there will be additional increase in the heat transfer compared to the cases where the magnetic field is parallel to the temperature gradient. In addition, the statistical evaluation (Taguchi technique) on magnetic fluids showed that the temperature and initial concentration of the magnetic phase exert the maximum and minimum contribution to the thermodiffusion, respectively. In the simulation of flow through porous media, dimensionless pressure drop was studied at different Reynolds numbers, based on pore permeability and interstitial fluid velocity. The obtained results agreed well with the correlation of Macdonald et al. (1979) for the range of actual flow Reynolds studied. Furthermore, calculated results for the dispersion coefficients in the cylinder geometry were found to be in agreement with those of Seymour and Callaghan.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fluid handling systems such as pump and fan systems are found to have a significant potential for energy efficiency improvements. To deliver the energy saving potential, there is a need for easily implementable methods to monitor the system output. This is because information is needed to identify inefficient operation of the fluid handling system and to control the output of the pumping system according to process needs. Model-based pump or fan monitoring methods implemented in variable speed drives have proven to be able to give information on the system output without additional metering; however, the current model-based methods may not be usable or sufficiently accurate in the whole operation range of the fluid handling device. To apply model-based system monitoring in a wider selection of systems and to improve the accuracy of the monitoring, this paper proposes a new method for pump and fan output monitoring with variable-speed drives. The method uses a combination of already known operating point estimation methods. Laboratory measurements are used to verify the benefits and applicability of the improved estimation method, and the new method is compared with five previously introduced model-based estimation methods. According to the laboratory measurements, the new estimation method is the most accurate and reliable of the model-based estimation methods.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fluid flow behaviour in porous media is a conundrum. Therefore, this research is focused on filtration-volumetric characterisation of fractured-carbonate sediments, coupled with their proper simulation. For this reason, at laboratory rock properties such as pore volume, permeability and porosity are measured, later phase permeabilities and oil recovery in function of flow rate are assessed. Furthermore, the rheological properties of three oils are measured and analysed. Finally based on rock and fluid properties, a model using COMSOL Multiphysics is built in order to compare the experimental and simulated results. The rock analyses show linear relation between flow rate and differential pressure, from which phase permeabilities and pressure gradient are determined, eventually the oil recovery under low and high flow rate is established. In addition, the oils reveal thixotropic properties as well as non-Newtonian behaviour described by Bingham model, consequently Carreau viscosity model for the used oil is given. Given these points, the model for oil and water is built in COMSOL Multiphysics, whereupon successfully the reciprocity between experimental and simulated results is analysed and compared. Finally, a two-phase displacement model is elaborated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Virtauslaskennan käyttö jokapäiväisessä insinöörityössä on lisääntynyt viime vuosina nopeaa vauhtia. Virtauslaskennan avulla voidaan tutkia säätöventtiilin virtauskenttää, mikä antaa suunnittelijalle mahdollisuuden korjata virtauskanavan ongelmakohtia jo tuotekehityksen alkuvaiheessa. Tämändiplomityön tavoitteena on määrittää uuden säätöventtiilin mitoituskertoimet jatutkia virtauslaskennan käytettävyyttä säätöventtiilisuunnittelussa. Teoreettisessa tarkastelussa on käsitelty venttiilivirtaukselle ominaisia virtausteknisiä yhtälöitä ja ilmiöitä, säätöventtiilin standardin määräämiä mitoitusyhtälöitä sekä neste- että kaasumelua. Lisäksi kerrotaan yleisimmistä säätöventtiilisovellutuksista ja esitellään suunnitteilla oleva uusi säätöventtiili. Virtauslaskennan avulla tutkittiin venttiilin kapasiteettiaja virtauskenttää. Alustavaa laskentaa tehtiin venttiilin paineenpalautumiskertoimen ja alkavan kavitaation määrittämiseksi. Virtauslaskenta tehtiin Fluent ja Cfdesign -virtauslaskentaohjelmilla. Virtauslaskennan antamia tuloksia verrattiin laboratoriossa saatuihin mittaustuloksiin. Laboratoriokokeiden avulla määritettiin uuden säätöventtiilin mitoituskertoimet. Lisäksi mitattiin säätöventtiilin aiheuttamaa neste- ja kaasumelua.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of fluid flow in pipes is one of the main topic of interest for engineers in industries. In this thesis, an effort is made to study the boundary layers formed near the wall of the pipe and how it behaves as a resistance to heat transfer. Before few decades, the scientists used to derive the analytical and empirical results by hand as there were limited means available to solve the complex fluid flow phenomena. Due to the increase in technology, now it has been practically possible to understand and analyze the actual fluid flow in any type of geometry. Several methodologies have been used in the past to analyze the boundary layer equations and to derive the expression for heat transfer. An integral relation approach is used for the analytical solution of the boundary layer equations and is compared with the FLUENT simulations for the laminar case. Law of the wall approach is used to derive the empirical correlation between dimensionless numbers and is then compared with the results from FLUENT for the turbulent case. In this thesis, different approaches like analytical, empirical and numerical are compared for the same set of fluid flow equations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diplomityön tarkoituksena on kehittää tietokoneohjelma putkilämmönsiirtimen vaippapuolen painehäviön laskemiseksi. Ohjelmalla voidaan varmistaa lämmönsiirtimen mitoitusvaiheessa, että vaippapuolen painehäviö ei ylitä sallittuja rajoja. Ohjelmatäydentää olemassa olevia mitoitusohjelmia. Tässä diplomityössä käsitellään ainoastaan höyryvoimalaitosprosesseissa käytettäviä putkilämmönsiirtimiä. Työn kirjallisessa osassa on selvitetty periaate höyryvoimalaitosprosessista ja siinä käytettävistä putkilämmönsiirtimistä sekä esitetty putkilämmönsiirtimien rakenne, yleinen suunnittelu ja lämpö- ja virtaustekninen mitoitus. Painehäviön laskennassa käytetyt ja lämpö- ja virtausteknistä mitoitusta käsittelevässä kappaleessa esitetyt yhtälöt perustuvat Bell-Delawaren menetelmään. Painehäviönlaskentaohjelma on toteutettu hyväksikäyttäen Microsoft Excel taulukkolaskentaa ja Visual Basic -ohjelmointikieltä. Painehäviön laskenta perustuu segmenttivälilevyillä varustetun putkilämmönsiirtimen vaippapuolen yksifaasivirtaukseen. Lämmönsiirtimen lauhdutinosan painehäviö oletetaan merkityksettömäksi, joten kokonaispainehäviö muodostuu höyryn- ja lauhteenjäähdyttimessä. Kehitetty ohjelma on suunniteltu erityisesti lauhteenjäähdyttimessä muodostuvan painehäviön laskentaan. Ohjelmalla laskettuja painehäviön arvoja on verrattu todellisesta lämmönsiirtimestä mitattuihin arvoihin. Lasketut arvotvastaavat hyvin mittaamalla saatuja, eikä tuloksissa ilmene mitään systemaattista virhettä. Ohjelma on valmis käytettäväksi putkilämmönsiirtimien mitoitustyökaluna. Diplomityön pohjalta on tehty ehdotukset ohjelman edelleen kehittämiseksi.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A rigorous unit operation model is developed for vapor membrane separation. The new model is able to describe temperature, pressure, and concentration dependent permeation as wellreal fluid effects in vapor and gas separation with hydrocarbon selective rubbery polymeric membranes. The permeation through the membrane is described by a separate treatment of sorption and diffusion within the membrane. The chemical engineering thermodynamics is used to describe the equilibrium sorption of vapors and gases in rubbery membranes with equation of state models for polymeric systems. Also a new modification of the UNIFAC model is proposed for this purpose. Various thermodynamic models are extensively compared in order to verify the models' ability to predict and correlate experimental vapor-liquid equilibrium data. The penetrant transport through the selective layer of the membrane is described with the generalized Maxwell-Stefan equations, which are able to account for thebulk flux contribution as well as the diffusive coupling effect. A method is described to compute and correlate binary penetrant¿membrane diffusion coefficients from the experimental permeability coefficients at different temperatures and pressures. A fluid flow model for spiral-wound modules is derived from the conservation equation of mass, momentum, and energy. The conservation equations are presented in a discretized form by using the control volume approach. A combination of the permeation model and the fluid flow model yields the desired rigorous model for vapor membrane separation. The model is implemented into an inhouse process simulator and so vapor membrane separation may be evaluated as an integralpart of a process flowsheet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dynamical properties ofshaken granular materials are important in many industrial applications where the shaking is used to mix, segregate and transport them. In this work asystematic, large scale simulation study has been performed to investigate the rheology of dense granular media, in the presence of gas, in a three dimensional vertical cylinder filled with glass balls. The base wall of the cylinder is subjected to sinusoidal oscillation in the vertical direction. The viscoelastic behavior of glass balls during a collision, have been studied experimentally using a modified Newton's Cradle device. By analyzing the results of the measurements, using numerical model based on finite element method, the viscous damping coefficient was determinedfor the glass balls. To obtain detailed information about the interparticle interactions in a shaker, a simplified model for collision between particles of a granular material was proposed. In order to simulate the flow of surrounding gas, a formulation of the equations for fluid flow in a porous medium including particle forces was proposed. These equations are solved with Large Eddy Simulation (LES) technique using a subgrid-model originally proposed for compressible turbulent flows. For a pentagonal prism-shaped container under vertical vibrations, the results show that oscillon type structures were formed. Oscillons are highly localized particle-like excitations of the granular layer. This self-sustaining state was named by analogy with its closest large-scale analogy, the soliton, which was first documented by J.S. Russell in 1834. The results which has been reportedbyBordbar and Zamankhan(2005b)also show that slightly revised fluctuation-dissipation theorem might apply to shaken sand, which appears to be asystem far from equilibrium and could exhibit strong spatial and temporal variations in quantities such as density and local particle velocity. In this light, hydrodynamic type continuum equations were presented for describing the deformation and flow of dense gas-particle mixtures. The constitutive equation used for the stress tensor provides an effective viscosity with a liquid-like character at low shear rates and a gaseous-like behavior at high shear rates. The numerical solutions were obtained for the aforementioned hydrodynamic equations for predicting the flow dynamics ofdense mixture of gas and particles in vertical cylindrical containers. For a heptagonal prism shaped container under vertical vibrations, the model results were found to predict bubbling behavior analogous to those observed experimentally. This bubbling behavior may be explained by the unusual gas pressure distribution found in the bed. In addition, oscillon type structures were found to be formed using a vertically vibrated, pentagonal prism shaped container in agreement with computer simulation results. These observations suggest that the pressure distribution plays a key rolein deformation and flow of dense mixtures of gas and particles under vertical vibrations. The present models provide greater insight toward the explanation of poorly understood hydrodynamic phenomena in the field of granular flows and dense gas-particle mixtures. The models can be generalized to investigate the granular material-container wall interactions which would be an issue of high interests in the industrial applications. By following this approach ideal processing conditions and powder transport can be created in industrial systems.