4 resultados para flow regulation
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Studies regarding the field of this work aim to substitute industrial mechanical conveyors with pneumatic conveyors to overcome the disadvantages in solids flow regulation and risks posed to production and health. The experimental part of this work examines how the granular material properties, fluidizing airflow rate, equipment geometry, and pressures along the pipes affect the mass flow rate through the system. The results are compared with those obtained from previous experiments conducted with alumina. Experiments were carried out with a pilot scale downer-riser system at Outotec Research Center Frankfurt. Granular materi-als used in this work are named as sand, ilmenite, iron ore 1 and iron ore 2.
Resumo:
Virtually every cell and organ in the human body is dependent on a proper oxygen supply. This is taken care of by the cardiovascular system that supplies tissues with oxygen precisely according to their metabolic needs. Physical exercise is one of the most demanding challenges the human circulatory system can face. During exercise skeletal muscle blood flow can easily increase some 20-fold and its proper distribution to and within muscles is of importance for optimal oxygen delivery. The local regulation of skeletal muscle blood flow during exercise remains little understood, but adenosine and nitric oxide may take part in this process. In addition to acute exercise, long-term vigorous physical conditioning also induces changes in the cardiovasculature, which leads to improved maximal physical performance. The changes are largely central, such as structural and functional changes in the heart. The function and reserve of the heart’s own vasculature can be studied by adenosine infusion, which according to animal studies evokes vasodilation via it’s a2A receptors. This has, however, never been addressed in humans in vivo and also studies in endurance athletes have shown inconsistent results regarding the effects of sport training on myocardial blood flow. This study was performed on healthy young adults and endurance athletes and local skeletal and cardiac muscle blod flow was measured by positron emission tomography. In the heart, myocardial blood flow reserve and adenosine A2A receptor density, and in skeletal muscle, oxygen extraction and consumption was also measured. The role of adenosine in the control of skeletal muscle blood flow during exercise, and its vasodilator effects, were addressed by infusing competitive inhibitors and adenosine into the femoral artery. The formation of skeletal muscle nitric oxide was also inhibited by a drug, with and without prostanoid blockade. As a result and conclusion, it can be said that skeletal muscle blood flow heterogeneity decreases with increasing exercise intensity most likely due to increased vascular unit recruitment, but exercise hyperemia is a very complex phenomenon that cannot be mimicked by pharmacological infusions, and no single regulator factor (e.g. adenosine or nitric oxide) accounts for a significant part of exercise-induced muscle hyperemia. However, in the present study it was observed for the first time in humans that nitric oxide is not only important regulator of the basal level of muscle blood flow, but also oxygen consumption, and together with prostanoids affects muscle blood flow and oxygen consumption during exercise. Finally, even vigorous endurance training does not seem to lead to supranormal myocardial blood flow reserve, and also other receptors than A2A mediate the vasodilator effects of adenosine. In respect to cardiac work, atheletes heart seems to be luxuriously perfused at rest, which may result from reduced oxygen extraction or impaired efficiency due to pronouncedly enhanced myocardial mass developed to excel in strenuous exercise.
Resumo:
In photosynthesis, light energy is converted to chemical energy, which is consumed for carbon assimilation in the Calvin-Benson-Bassham (CBB) cycle. Intensive research has significantly advanced the understanding of how photosynthesis can survive in the ever-changing light conditions. However, precise details concerning the dynamic regulation of photosynthetic processes have remained elusive. The aim of my thesis was to specify some molecular mechanisms and interactions behind the regulation of photosynthetic reactions under environmental fluctuations. A genetic approach was employed, whereby Arabidopsis thaliana mutants deficient in specific photosynthetic protein components were subjected to adverse light conditions and assessed for functional deficiencies in the photosynthetic machinery. I examined three interconnected mechanisms: (i) auxiliary functions of PsbO1 and PsbO2 isoforms in the oxygen evolving complex of photosystem II (PSII), (ii) the regulatory function of PGR5 in photosynthetic electron transfer and (iii) the involvement of the Calcium Sensing Receptor CaS in photosynthetic performance. Analysis of photosynthetic properties in psbo1 and psbo2 mutants demonstrated that PSII is sensitive to light induced damage when PsbO2, rather than PsbO1, is present in the oxygen evolving complex. PsbO1 stabilizes PSII more efficiently compared to PsbO2 under light stress. However, PsbO2 shows a higher GTPase activity compared to PsbO1, and plants may partially compensate the lack of PsbO1 by increasing the rate of the PSII repair cycle. PGR5 proved vital in the protection of photosystem I (PSI) under fluctuating light conditions. Biophysical characterization of photosynthetic electron transfer reactions revealed that PGR5 regulates linear electron transfer by controlling proton motive force, which is crucial for the induction of the photoprotective non-photochemical quenching and the control of electron flow from PSII to PSI. I conclude that PGR5 controls linear electron transfer to protect PSI against light induced oxidative damage. I also found that PGR5 physically interacts with CaS, which is not needed for photoprotection of PSII or PSI in higher plants. Rather, transcript profiling and quantitative proteomic analysis suggested that CaS is functionally connected with the CBB cycle. This conclusion was supported by lowered amounts of specific calciumregulated CBB enzymes in cas mutant chloroplasts and by slow electron flow to PSI electron acceptors when leaves were reilluminated after an extended dark period. I propose that CaS is required for calcium regulation of the CBB cycle during periods of darkness. Moreover, CaS may also have a regulatory role in the activation of chloroplast ATPase. Through their diverse interactions, components of the photosynthetic machinery ensure optimization of light-driven electron transport and efficient basic production, while minimizing the harm caused by light induced photodamage.
Resumo:
During spermatogenesis, different genes are expressed in a strictly coordinated fashion providing an excellent model to study cell differentiation. Recent identification of testis specific genes and the development of green fluorescence protein (GFP) transgene technology and an in vivo system for studying the differentiation of transplanted male germ cells in infertile testis has opened new possibilities for studying the male germ cell differentiation at molecular level. We have employed these techniques in combination with transillumination based stage recognition (Parvinen and Vanha-Perttula, 1972) and squash preparation techniques (Parvinen and Hecht, 1981) to study the regulation of male germ cell differentiation. By using transgenic mice expressing enhanced-(E)GFP as a marker we have studied the expression and hormonal regulation of beta-actin and acrosin proteins in the developmentally different living male germ cells. Beta-actin was demonstrated in all male germ cells, whereas acrosin was expressed only in late meiotic and in postmeiotic cells. Follicle stimulating hormone stimulated b-actin-EGFP expression at stages I-VI and enhanced the formation of microtubules in spermatids and this way reduced the size of the acrosomic system. When EGFP expressing spermatogonial stem cells were transplanted into infertile mouse testis differentiation and the synchronized development of male germ cells could be observed during six months observation time. Each colony developed independently and maintained typical stage-dependent cell associations. Furthermore, if more than two colonies were fused, each of them was adjusted to one stage and synchronized. By studying living spermatids we were able to demonstrate novel functions for Golgi complex and chromatoid body in material sharing between neighbor spermatids. Immunosytochemical analyses revealed a transport of haploid cell specific proteins in spermatids (TRA54 and Shippo1) and through the intercellular bridges (TRA54). Cytoskeleton inhibitor (nocodazole) demonstrated the importance of microtubules in material sharing between spermatids and in preserving the integrity of the chromatoid body. Golgi complex inhibitor, brefeldin A, revealed the great importance of Golgi complex i) in acrosomic system formation ii) TRA54 translation and in iii) granule trafficking between spermatids.