15 resultados para flight optimisation
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Doctoral dissertation, Academy of Fine Arts
Resumo:
Nowadays the used fuel variety in power boilers is widening and new boiler constructions and running models have to be developed. This research and development is done in small pilot plants where more faster analyse about the boiler mass and heat balance is needed to be able to find and do the right decisions already during the test run. The barrier on determining boiler balance during test runs is the long process of chemical analyses of collected input and outputmatter samples. The present work is concentrating on finding a way to determinethe boiler balance without chemical analyses and optimise the test rig to get the best possible accuracy for heat and mass balance of the boiler. The purpose of this work was to create an automatic boiler balance calculation method for 4 MW CFB/BFB pilot boiler of Kvaerner Pulping Oy located in Messukylä in Tampere. The calculation was created in the data management computer of pilot plants automation system. The calculation is made in Microsoft Excel environment, which gives a good base and functions for handling large databases and calculations without any delicate programming. The automation system in pilot plant was reconstructed und updated by Metso Automation Oy during year 2001 and the new system MetsoDNA has good data management properties, which is necessary for big calculations as boiler balance calculation. Two possible methods for calculating boiler balance during test run were found. Either the fuel flow is determined, which is usedto calculate the boiler's mass balance, or the unburned carbon loss is estimated and the mass balance of the boiler is calculated on the basis of boiler's heat balance. Both of the methods have their own weaknesses, so they were constructed parallel in the calculation and the decision of the used method was left to user. User also needs to define the used fuels and some solid mass flowsthat aren't measured automatically by the automation system. With sensitivity analysis was found that the most essential values for accurate boiler balance determination are flue gas oxygen content, the boiler's measured heat output and lower heating value of the fuel. The theoretical part of this work concentrates in the error management of these measurements and analyses and on measurement accuracy and boiler balance calculation in theory. The empirical part of this work concentrates on the creation of the balance calculation for the boiler in issue and on describing the work environment.
Resumo:
Over 70% of the total costs of an end product are consequences of decisions that are made during the design process. A search for optimal cross-sections will often have only a marginal effect on the amount of material used if the geometry of a structure is fixed and if the cross-sectional characteristics of its elements are property designed by conventional methods. In recent years, optimalgeometry has become a central area of research in the automated design of structures. It is generally accepted that no single optimisation algorithm is suitable for all engineering design problems. An appropriate algorithm, therefore, mustbe selected individually for each optimisation situation. Modelling is the mosttime consuming phase in the optimisation of steel and metal structures. In thisresearch, the goal was to develop a method and computer program, which reduces the modelling and optimisation time for structural design. The program needed anoptimisation algorithm that is suitable for various engineering design problems. Because Finite Element modelling is commonly used in the design of steel and metal structures, the interaction between a finite element tool and optimisation tool needed a practical solution. The developed method and computer programs were tested with standard optimisation tests and practical design optimisation cases. Three generations of computer programs are developed. The programs combine anoptimisation problem modelling tool and FE-modelling program using three alternate methdos. The modelling and optimisation was demonstrated in the design of a new boom construction and steel structures of flat and ridge roofs. This thesis demonstrates that the most time consuming modelling time is significantly reduced. Modelling errors are reduced and the results are more reliable. A new selection rule for the evolution algorithm, which eliminates the need for constraint weight factors is tested with optimisation cases of the steel structures that include hundreds of constraints. It is seen that the tested algorithm can be used nearly as a black box without parameter settings and penalty factors of the constraints.
Resumo:
Työssä tutkitaan menetelmiä, käytäntöjä ja oliosuunnittelumalleja jotka johtavat ohjelmistojen koon pienentymiseen. Työssä tutkitaan konkreettisia keinoja ohjelmistojen koon optimointiin Symbian-alustalla. Työ keskityy C++ ohjelmistoihin jotka on suunniteltu toimimaan matkapuhelimissa ja muissa langattomissa laitteissa. Työssä esitellään, analysoidaan ja optimoidaan todellinen, loppukäyttäjille suunnattu, langaton sovellus. Käytetyt optimointimenetelmät sekä saadut tulokset esitellään ja analysoidaan. Esimerkkisovelluksen toteuttamisesta kertyvien kokemusten perusteella esitetään suosituksia langattomaan sovelluskehitykseen. Hyvän teknisen arkkitehtuurisuunnitelman todettiin olevan merkittävässä roolissa. C++ -kielen luokkaperinnän huomattiin yllättäen olevan suurin ohjelmatiedostojen kokoon vaikuttava tekijä Symbian-käyttöjärjestelmässä. Pienten ohjelmien tuottamisessa vaaditaan taitoa ja kurinalaisuutta. Ohjelmistokehittäjien asenteet ovat yleensä suurin este sille. Monet ihmiset eivät vain välitä kirjoittaminen ohjelmiensa koosta.
Resumo:
Several possible methods of increasing the efficiency and power of hydro power plants by improving the flow passages are investigated in this stydy. The theoretical background of diffuser design and its application to the optimisation of hydraulic turbine draft tubes is presented in the first part of this study. Several draft tube modernisation projects that have been carried out recently are discussed. Also, a method of increasing the efficiency of the draft tube by injecting a high velocity jet into the boundary layer is presented. Methods of increasing the head of a hydro power plant by using an ejector or a jet pump are discussed in the second part of this work. The theoretical principles of various ejector and jet pump types are presented and four different methods of calculating them are examined in more detail. A self-made computer code is used to calculate the gain in the head for two example power plants. Suitable ejector installations for the example plants are also discussed. The efficiency of the ejector power was found to be in the range 6 - 15 % for conventional head increasers, and 30 % for the jet pump at its optimum operating point. In practice, it is impossible to install an optimised jet pump with a 30 % efficiency into the draft tube as this would considerabely reduce the efficiency of the draft tube at normal operating conditions. This demonstrates, however, the potential for improvement which lies in conventional head increaser technology. This study is based on previous publications and on published test results. No actual laboratory measurements were made for this study. Certain aspects of modelling the flow in the draft tube using computational fluid dynamics are discussed in the final part of this work. The draft tube inlet velocity field is a vital boundary condition for such a calculation. Several previously measured velocity fields that have successfully been utilised in such flow calculations are presented herein.
Resumo:
Data traffic caused by mobile advertising client software when it is communicating with the network server can be a pain point for many application developers who are considering advertising-funded application distribution, since the cost of the data transfer might scare their users away from using the applications. For the thesis project, a simulation environment was built to mimic the real client-server solution for measuring the data transfer over varying types of connections with different usage scenarios. For optimising data transfer, a few general-purpose compressors and XML-specific compressors were tried for compressing the XML data, and a few protocol optimisations were implemented. For optimising the cost, cache usage was improved and pre-loading was enhanced to use free connections to load the data. The data traffic structure and the various optimisations were analysed, and it was found that the cache usage and pre-loading should be enhanced and that the protocol should be changed, with report aggregation and compression using WBXML or gzip.
Resumo:
Fine powders of minerals are used commonly in the paper and paint industry, and for ceramics. Research for utilizing of different waste materials in these applications is environmentally important. In this work, the ultrafine grinding of two waste gypsum materials, namely FGD (Flue Gas Desulphurisation) gypsum and phosphogypsum from a phosphoric acid plant, with the attrition bead mill and with the jet mill has been studied. The ' objective of this research was to test the suitability of the attrition bead mill and of the jet mill to produce gypsum powders with a particle size of a few microns. The grinding conditions were optimised by studying the influences of different operational grinding parameters on the grinding rate and on the energy consumption of the process in order to achieve a product fineness such as that required in the paper industry with as low energy consumption as possible. Based on experimental results, the most influential parameters in the attrition grinding were found to be the bead size, the stirrer type, and the stirring speed. The best conditions, based on the product fineness and specific energy consumption of grinding, for the attrition grinding process is to grind the material with small grinding beads and a high rotational speed of the stirrer. Also, by using some suitable grinding additive, a finer product is achieved with a lower energy consumption. In jet mill grinding the most influential parameters were the feed rate, the volumetric flow rate of the grinding air, and the height of the internal classification tube. The optimised condition for the jet is to grind with a small feed rate and with a large rate of volumetric flow rate of grinding air when the inside tube is low. The finer product with a larger rate of production was achieved with the attrition bead mill than with the jet mill, thus the attrition grinding is better for the ultrafine grinding of gypsum than the jet grinding. Finally the suitability of the population balance model for simulation of grinding processes has been studied with different S , B , and C functions. A new S function for the modelling of an attrition mill and a new C function for the modelling of a jet mill were developed. The suitability of the selected models with the developed grinding functions was tested by curve fitting the particle size distributions of the grinding products and then comparing the fitted size distributions to the measured particle sizes. According to the simulation results, the models are suitable for the estimation and simulation of the studied grinding processes.
Resumo:
In this work mathematical programming models for structural and operational optimisation of energy systems are developed and applied to a selection of energy technology problems. The studied cases are taken from industrial processes and from large regional energy distribution systems. The models are based on Mixed Integer Linear Programming (MILP), Mixed Integer Non-Linear Programming (MINLP) and on a hybrid approach of a combination of Non-Linear Programming (NLP) and Genetic Algorithms (GA). The optimisation of the structure and operation of energy systems in urban regions is treated in the work. Firstly, distributed energy systems (DES) with different energy conversion units and annual variations of consumer heating and electricity demands are considered. Secondly, district cooling systems (DCS) with cooling demands for a large number of consumers are studied, with respect to a long term planning perspective regarding to given predictions of the consumer cooling demand development in a region. The work comprises also the development of applications for heat recovery systems (HRS), where paper machine dryer section HRS is taken as an illustrative example. The heat sources in these systems are moist air streams. Models are developed for different types of equipment price functions. The approach is based on partitioning of the overall temperature range of the system into a number of temperature intervals in order to take into account the strong nonlinearities due to condensation in the heat recovery exchangers. The influence of parameter variations on the solutions of heat recovery systems is analysed firstly by varying cost factors and secondly by varying process parameters. Point-optimal solutions by a fixed parameter approach are compared to robust solutions with given parameter variation ranges. In the work enhanced utilisation of excess heat in heat recovery systems with impingement drying, electricity generation with low grade excess heat and the use of absorption heat transformers to elevate a stream temperature above the excess heat temperature are also studied.
Resumo:
The objective of this project was to introduce a new software product to pulp industry, a new market for case company. An optimization based scheduling tool has been developed to allow pulp operations to better control their production processes and improve both production efficiency and stability. Both the work here and earlier research indicates that there is a potential for savings around 1-5%. All the supporting data is available today coming from distributed control systems, data historians and other existing sources. The pulp mill model together with the scheduler, allows what-if analyses of the impacts and timely feasibility of various external actions such as planned maintenance of any particular mill operation. The visibility gained from the model proves also to be a real benefit. The aim is to satisfy demand and gain extra profit, while achieving the required customer service level. Research effort has been put both in understanding the minimum features needed to satisfy the scheduling requirements in the industry and the overall existence of the market. A qualitative study was constructed to both identify competitive situation and the requirements vs. gaps on the market. It becomes clear that there is no such system on the marketplace today and also that there is room to improve target market overall process efficiency through such planning tool. This thesis also provides better overall understanding of the different processes in this particular industry for the case company.
Resumo:
Global warming is one of the most alarming problems of this century. Initial scepticism concerning its validity is currently dwarfed by the intensification of extreme weather events whilst the gradual arising level of anthropogenic CO2 is pointed out as its main driver. Most of the greenhouse gas (GHG) emissions come from large point sources (heat and power production and industrial processes) and the continued use of fossil fuels requires quick and effective measures to meet the world’s energy demand whilst (at least) stabilizing CO2 atmospheric levels. The framework known as Carbon Capture and Storage (CCS) – or Carbon Capture Utilization and Storage (CCUS) – comprises a portfolio of technologies applicable to large‐scale GHG sources for preventing CO2 from entering the atmosphere. Amongst them, CO2 capture and mineralisation (CCM) presents the highest potential for CO2 sequestration as the predicted carbon storage capacity (as mineral carbonates) far exceeds the estimated levels of the worldwide identified fossil fuel reserves. The work presented in this thesis aims at taking a step forward to the deployment of an energy/cost effective process for simultaneous capture and storage of CO2 in the form of thermodynamically stable and environmentally friendly solid carbonates. R&D work on the process considered here began in 2007 at Åbo Akademi University in Finland. It involves the processing of magnesium silicate minerals with recyclable ammonium salts for extraction of magnesium at ambient pressure and 400‐440⁰C, followed by aqueous precipitation of magnesium in the form of hydroxide, Mg(OH)2, and finally Mg(OH)2 carbonation in a pressurised fluidized bed reactor at ~510⁰C and ~20 bar PCO2 to produce high purity MgCO3. Rock material taken from the Hitura nickel mine, Finland, and serpentinite collected from Bragança, Portugal, were tested for magnesium extraction with both ammonium sulphate and bisulphate (AS and ABS) for determination of optimal operation parameters, primarily: reaction time, reactor type and presence of moisture. Typical efficiencies range from 50 to 80% of magnesium extraction at 350‐450⁰C. In general ABS performs better than AS showing comparable efficiencies at lower temperature and reaction times. The best experimental results so far obtained include 80% magnesium extraction with ABS at 450⁰C in a laboratory scale rotary kiln and 70% Mg(OH)2 carbonation in the PFB at 500⁰C, 20 bar CO2 pressure for 15 minutes. The extraction reaction with ammonium salts is not at all selective towards magnesium. Other elements like iron, nickel, chromium, copper, etc., are also co‐extracted. Their separation, recovery and valorisation are addressed as well and found to be of great importance. The assessment of the exergetic performance of the process was carried out using Aspen Plus® software and pinch analysis technology. The choice of fluxing agent and its recovery method have a decisive sway in the performance of the process: AS is recovered by crystallisation and in general the whole process requires more exergy (2.48–5.09 GJ/tCO2sequestered) than ABS (2.48–4.47 GJ/tCO2sequestered) when ABS is recovered by thermal decomposition. However, the corrosive nature of molten ABS and operational problems inherent to thermal regeneration of ABS prohibit this route. Regeneration of ABS through addition of H2SO4 to AS (followed by crystallisation) results in an overall negative exergy balance (mainly at the expense of low grade heat) but will flood the system with sulphates. Although the ÅA route is still energy intensive, its performance is comparable to conventional CO2 capture methods using alkanolamine solvents. An energy‐neutral process is dependent on the availability and quality of nearby waste heat and economic viability might be achieved with: magnesium extraction and carbonation levels ≥ 90%, the processing of CO2‐containing flue gases (eliminating the expensive capture step) and production of marketable products.
Resumo:
Tässä tutkielmassa tutkitaan Primary Flight Displayn (PFD) toimintaa ja turvallisuusteki-jöitä. Primary Flight Display on nykyaikaisen lentokoneohjaamon yksi merkittävimmistä näytöistä, joka korvaa kuusi perinteistä analogista mittaria. Tutkielmassa selvitetään PFD:n ominaisuuksia, hyötyjä ja riskejä verrattuna sillä korvattuihin analogisiin mittareihin. Tutkielman päätutkimuskysymys on: Millä tavoilla Primary Flight Displayn lentoturvallisuus eroaa sillä korvattujen perinteisien mittareiden lentoturvallisuudesta? Tutkielma on luonteeltaan laadullinen kirjallisuustutkimus, joka perustuu valmiisiin ai-neistoihin. Menetelmänä aineiston analyysissä on sisällönanalyysi. Tutkielmassa tarkastel-laan sekä PFD:n näyttöä että tärkeimpiä järjestelmiä näytön informaatioon liittyen. Tutkielmassa esitellään myös PFD:n korvaamat kuusi perinteistä mittaria, jotta voidaan paremmin ymmärtää mittarien eroavaisuuksia niin toimintaperiaatteissa kuin turvallisuustekijöissäkin. PFD:n toiminta eroaa merkittävästi perinteisistä analogisista mittareista, vaikka muutamia yhtäläisyyksiäkin esiintyy. Osa PFD:n eroavaisuuksista nähdään lentoturvallisuutta kehittävinä tekijöinä, mutta PFD ja sen käyttö sisältävät toistaiseksi myös useita riskitekijöitä. Keskeisimpinä johtopäätöksinä havaitaan, että PFD:n etuja lentoturvallisuuden kannalta ovat nopea ristiintarkkailu, suuri keinohorisontti, erilaiset lisäinformaatiot, lentoarvojen tallentuminen sekä laitteen kyky tunnistaa virheellistä dataa. PFD:n taustalla toimivat elektroniset järjestelmät mittaavat arvoja nopeammin, tarkemmin ja luotettavammin kuin perinteisien mittareiden mekaaniset osat. PFD:n riskitekijöitä ovat muun muassa digitaalinen ilmanopeus- ja korkeusnauha ilman viisareita, näppihäiriöt, standardisoinnin puute ja järjestelmien monimutkaisuus. Lisäksi PFD saattaa tietyissä lentotiloissa jopa heikentää ohjaajan tilannetietoisuutta. Keskeisimpinä PFD:n kehitysehdotuksina tutkielmassa nähdään näyttöjen tietyn asteen standardisoiminen, visuaalisten ominaisuuksien parantaminen, sekä käyttökoulutuksen tehostaminen niin laitteen normaali- kuin vajaatoiminnoissa. PFD:n mittarit pitäisivät myös sijaita sopivan lähekkäin toisiaan nopean ristiintarkkailun mahdollistamiseksi, mutta ne eivät saisi olla niin tiiviisti yhdessä, että näytön lukeminen vaikeutuu.