10 resultados para feature point selection

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, feature selection in classification based problems is highlighted. The role of feature selection methods is to select important features by discarding redundant and irrelevant features in the data set, we investigated this case by using fuzzy entropy measures. We developed fuzzy entropy based feature selection method using Yu's similarity and test this using similarity classifier. As the similarity classifier we used Yu's similarity, we tested our similarity on the real world data set which is dermatological data set. By performing feature selection based on fuzzy entropy measures before classification on our data set the empirical results were very promising, the highest classification accuracy of 98.83% was achieved when testing our similarity measure to the data set. The achieved results were then compared with some other results previously obtained using different similarity classifiers, the obtained results show better accuracy than the one achieved before. The used methods helped to reduce the dimensionality of the used data set, to speed up the computation time of a learning algorithm and therefore have simplified the classification task

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Personalized medicine will revolutionize our capabilities to combat disease. Working toward this goal, a fundamental task is the deciphering of geneticvariants that are predictive of complex diseases. Modern studies, in the formof genome-wide association studies (GWAS) have afforded researchers with the opportunity to reveal new genotype-phenotype relationships through the extensive scanning of genetic variants. These studies typically contain over half a million genetic features for thousands of individuals. Examining this with methods other than univariate statistics is a challenging task requiring advanced algorithms that are scalable to the genome-wide level. In the future, next-generation sequencing studies (NGS) will contain an even larger number of common and rare variants. Machine learning-based feature selection algorithms have been shown to have the ability to effectively create predictive models for various genotype-phenotype relationships. This work explores the problem of selecting genetic variant subsets that are the most predictive of complex disease phenotypes through various feature selection methodologies, including filter, wrapper and embedded algorithms. The examined machine learning algorithms were demonstrated to not only be effective at predicting the disease phenotypes, but also doing so efficiently through the use of computational shortcuts. While much of the work was able to be run on high-end desktops, some work was further extended so that it could be implemented on parallel computers helping to assure that they will also scale to the NGS data sets. Further, these studies analyzed the relationships between various feature selection methods and demonstrated the need for careful testing when selecting an algorithm. It was shown that there is no universally optimal algorithm for variant selection in GWAS, but rather methodologies need to be selected based on the desired outcome, such as the number of features to be included in the prediction model. It was also demonstrated that without proper model validation, for example using nested cross-validation, the models can result in overly-optimistic prediction accuracies and decreased generalization ability. It is through the implementation and application of machine learning methods that one can extract predictive genotype–phenotype relationships and biological insights from genetic data sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tämän diplomityön tavoitteena on kartoittaa suomalaisen sahakonevalmistaja Veisto Oy:n kannalta lähitulevaisuuden merkittävimmät markkina-alueet, joiden sahateollisuuteen tehdään lähivuosina eniten korkean teknologian investointeja. Markkina-alueiden valinnassa sovelletaan sekä numeerisiin tilastoihin että asiantuntijahaastatteluihin pohjautuvia ranking-menetelmiä. Työn ensimmäinen osa käsittelee kansainvälisten teollisten markkinoiden ominaispiirteitä ja niiden analysointia. Pääpaino on kuitenkin screening-menetelmillä, markkina-alueiden vertailumenetelmilläja päätöksenteon työkaluilla. Työn toisessa osassa keskitytään markkina-alueiden screeningiin, analysointiin ja maiden eri ominaisuuksien vertailuun. Päätöksentekomatriiseja hyödyntäen valitaan Veisto Oy:lle kolme tällä hetkellä houkuttelevinta markkina-aluetta, joita ovat Venäjä, USA:n kaakkoisosan Southern Yellow Pine -alue sekä Etelä-Amerikan suurimmat sahaajamaat (Brasilia, Argentiina ja Chile) yhtenä alueena. Valituilla alueilla on Veiston kannalta omat haasteensa: USA:ssa vahvat kotimaiset kilpailijat ja uusien referenssien saaminen, Venäjällä investointien epävarmuus ja markkina-alueen laajuuden tuoma monimuotoisuus sekä Etelä-Amerikassa vahvat ruotsalaiset kilpailijat sekä etenkin Brasilian osalta tuntuvat suojatullit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the dissertation is to increase understanding and knowledge in the field where group decision support system (GDSS) and technology selection research overlap in the strategic sense. The purpose is to develop pragmatic, unique and competent management practices and processes for strategic technology assessment and selection from the whole company's point of view. The combination of the GDSS and technology selection is approached from the points of view of the core competence concept, the lead user -method, and different technology types. In this research the aim is to find out how the GDSS contributes to the technology selection process, what aspects should be considered when selecting technologies to be developed or acquired, and what advantages and restrictions the GDSS has in the selection processes. These research objectives are discussed on the basis of experiences and findings in real life selection meetings. The research has been mainly carried outwith constructive, case study research methods. The study contributes novel ideas to the present knowledge and prior literature on the GDSS and technology selection arena. Academic and pragmatic research has been conducted in four areas: 1) the potential benefits of the group support system with the lead user -method,where the need assessment process is positioned as information gathering for the selection of wireless technology development projects; 2) integrated technology selection and core competencies management processes both in theory and in practice; 3) potential benefits of the group decision support system in the technology selection processes of different technology types; and 4) linkages between technology selection and R&D project selection in innovative product development networks. New type of knowledge and understanding has been created on the practical utilization of the GDSS in technology selection decisions. The study demonstrates that technology selection requires close cooperation between differentdepartments, functions, and strategic business units in order to gather the best knowledge for the decision making. The GDSS is proved to be an effective way to promote communication and co-operation between the selectors. The constructs developed in this study have been tested in many industry fields, for example in information and communication, forest, telecommunication, metal, software, and miscellaneous industries, as well as in non-profit organizations. The pragmatic results in these organizations are some of the most relevant proofs that confirm the scientific contribution of the study, according to the principles of the constructive research approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is about detection of local image features. The research topic belongs to the wider area of object detection, which is a machine vision and pattern recognition problem where an object must be detected (located) in an image. State-of-the-art object detection methods often divide the problem into separate interest point detection and local image description steps, but in this thesis a different technique is used, leading to higher quality image features which enable more precise localization. Instead of using interest point detection the landmark positions are marked manually. Therefore, the quality of the image features is not limited by the interest point detection phase and the learning of image features is simplified. The approach combines both interest point detection and local description into one phase for detection. Computational efficiency of the descriptor is therefore important, leaving out many of the commonly used descriptors as unsuitably heavy. Multiresolution Gabor features has been the main descriptor in this thesis and improving their efficiency is a significant part. Actual image features are formed from descriptors by using a classifierwhich can then recognize similar looking patches in new images. The main classifier is based on Gaussian mixture models. Classifiers are used in one-class classifier configuration where there are only positive training samples without explicit background class. The local image feature detection method has been tested with two freely available face detection databases and a proprietary license plate database. The localization performance was very good in these experiments. Other applications applying the same under-lying techniques are also presented, including object categorization and fault detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Työssä vertaillaan kaupallisia lyhyen kantaman radiotekniikoita. Vertailujen pohjalta valitaan parhaiten sovelluskohteeseen soveltuva radiotekniikka.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Local features are used in many computer vision tasks including visual object categorization, content-based image retrieval and object recognition to mention a few. Local features are points, blobs or regions in images that are extracted using a local feature detector. To make use of extracted local features the localized interest points are described using a local feature descriptor. A descriptor histogram vector is a compact representation of an image and can be used for searching and matching images in databases. In this thesis the performance of local feature detectors and descriptors is evaluated for object class detection task. Features are extracted from image samples belonging to several object classes. Matching features are then searched using random image pairs of a same class. The goal of this thesis is to find out what are the best detector and descriptor methods for such task in terms of detector repeatability and descriptor matching rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acquisitions are a way for a company to grow, enter new geographical areas, buy out competition or diversify. Acquisitions have recently grown in both size and value. Despite of this, only approximately 25 percent of acquisitions reach their targets and goals. Companies making serial acquisitions seem to be exceptionally successful and succeed in the majority of their acquisitions. The main research question this study aims to answer is: “What issues impact the selection of acquired companies from the point of view of a serial acquirer? The main research question is answered through three sub questions: “What is a buying process for a serial acquirer like?”, “What are the motives for a serial acquirer to buy companies?” and “What is the connection between company strategy and serial acquisitions?”. The case company KONE is a globally operating company which mainly produces and maintains elevators and escalators. Its headquarter is located in Helsinki, Finland. The company has a long history of making acquisitions and does 20- 30 acquisitions a year. By a key person interview, the acquisition process of the case company is compared with the literature about successful serial acquirers. The acquisition motives in this case are reflected upon three of the acquisition motive theories by Trautwein: efficiency theory, monopoly theory and valuation theory. The linkage between serial acquisitions and company strategy is studied through the key person interview. The main research findings are that the acquisition process of KONE is compatible with a successful acquisition process recognized in literature (RAID). This study confirms the efficiency theory as an acquisition motive and more closely the operational synergies. The monopoly theory can only vaguely be supported by this study, but cannot be totally rejected because of the structure of the industry. The valuation theory does not get any support in this study and can therefore be rejected. The linkage between company strategy and serial acquisitions is obvious and making acquisitions can be seen as growth strategy and a part of other company strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiac troponins (cTn) I and T are the current golden standard biochemical markers in the diagnosis and risk stratification of patients with suspected acute coronary syndrome. During the past few years, novel assays capable of detecting cTn‐concentrations in >50% of apparently healthy individuals have become readily available. With the emerging of these high sensitivity cTn assays, reductions in the assay specificity have caused elevations in the measured cTn levels that do not correlate with the clinical picture of the patient. The increased assay sensitivity may reveal that various analytical interference mechanisms exist. This doctoral thesis focused on developing nanoparticle‐assisted immunometric assays that could possibly be applied to an automated point‐of‐care system. The main objective was to develop minimally interference‐prone assays for cTnI by employing recombinant antibody fragments. Fast 5‐ and 15‐minute assays for cTnI and D‐dimer, a degradation product of fibrin, based on intrinsically fluorescent nanoparticles were introduced, thus highlighting the versatility of nanoparticles as universally applicable labels. The utilization of antibody fragments in different versions of the developed cTnI‐assay enabled decreases in the used antibody amounts without sacrificing assay sensitivity. In addition, the utilization of recombinant antibody fragments was shown to significantly decrease the measured cTnI concentrations in an apparently healthy population, as well as in samples containing known amounts of potentially interfering factors: triglycerides, bilirubin, rheumatoid factors, or human anti‐mouse antibodies. When determining the specificity of four commercially available antibodies for cTnI, two out of the four cross‐reacted with skeletal troponin I, but caused crossreactivity issues in patient samples only when paired together. In conclusion, the results of this thesis emphasize the importance of careful antibody selection when developing cTnI assays. The results with different recombinant antibody fragments suggest that the utilization of antibody fragments should strongly be encouraged in the immunoassay field, especially with analytes such as cTnI that require highly sensitive assay approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing emphasis on energy efficiency is starting to yield results in the reduction in greenhouse gas emissions; however, the effort is still far from sufficient. Therefore, new technical solutions that will enhance the efficiency of power generation systems are required to maintain the sustainable growth rate, without spoiling the environment. A reduction in greenhouse gas emissions is only possible with new low-carbon technologies, which enable high efficiencies. The role of the rotating electrical machine development is significant in the reduction of global emissions. A high proportion of the produced and consumed electrical energy is related to electrical machines. One of the technical solutions that enables high system efficiency on both the energy production and consumption sides is high-speed electrical machines. This type of electrical machines has a high system overall efficiency, a small footprint, and a high power density compared with conventional machines. Therefore, high-speed electrical machines are favoured by the manufacturers producing, for example, microturbines, compressors, gas compression applications, and air blowers. High-speed machine technology is challenging from the design point of view, and a lot of research is in progress both in academia and industry regarding the solution development. The solid technical basis is of importance in order to make an impact in the industry considering the climate change. This work describes the multidisciplinary design principles and material development in high-speed electrical machines. First, high-speed permanent magnet synchronous machines with six slots, two poles, and tooth-coil windings are discussed in this doctoral dissertation. These machines have unique features, which help in solving rotordynamic problems and reducing the manufacturing costs. Second, the materials for the high-speed machines are discussed in this work. The materials are among the key limiting factors in electrical machines, and to overcome this limit, an in-depth analysis of the material properties and behavior is required. Moreover, high-speed machines are sometimes operating in a harsh environment because they need to be as close as possible to the rotating tool and fully exploit their advantages. This sets extra requirements for the materials applied.