8 resultados para experimental plant poisoning

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The safe use of nuclear power plants (NPPs) requires a deep understanding of the functioning of physical processes and systems involved. Studies on thermal hydraulics have been carried out in various separate effects and integral test facilities at Lappeenranta University of Technology (LUT) either to ensure the functioning of safety systems of light water reactors (LWR) or to produce validation data for the computer codes used in safety analyses of NPPs. Several examples of safety studies on thermal hydraulics of the nuclear power plants are discussed. Studies are related to the physical phenomena existing in different processes in NPPs, such as rewetting of the fuel rods, emergency core cooling (ECC), natural circulation, small break loss-of-coolant accidents (SBLOCA), non-condensable gas release and transport, and passive safety systems. Studies on both VVER and advanced light water reactor (ALWR) systems are included. The set of cases include separate effects tests for understanding and modeling a single physical phenomenon, separate effects tests to study the behavior of a NPP component or a single system, and integral tests to study the behavior of the whole system. In the studies following steps can be found, not necessarily in the same study. Experimental studies as such have provided solutions to existing design problems. Experimental data have been created to validate a single model in a computer code. Validated models are used in various transient analyses of scaled facilities or NPPs. Integral test data are used to validate the computer codes as whole, to see how the implemented models work together in a code. In the final stage test results from the facilities are transferred to the NPP scale using computer codes. Some of the experiments have confirmed the expected behavior of the system or procedure to be studied; in some experiments there have been certain unexpected phenomena that have caused changes to the original design to avoid the recognized problems. This is the main motivation for experimental studies on thermal hydraulics of the NPP safety systems. Naturally the behavior of the new system designs have to be checked with experiments, but also the existing designs, if they are applied in the conditions that differ from what they were originally designed for. New procedures for existing reactors and new safety related systems have been developed for new nuclear power plant concepts. New experiments have been continuously needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diplomityön tarkoituksena oli parantaa Stora Enso Sachsenin siistausprosessissa tuotetun uusiomassan vaaleuden kehitystä ja tutkia siihen vaikuttavia tekijöitä. Työn kirjallisessa osassa käsiteltiin uusiomassan kuidutusta ja vaahdotussiistausprosessia, sekä keräyspaperin ominaisuuksia ja käyttöä paperiteollisuuden raaka-aineena. Kokeellisessa osassa keskityttiin modifioidun natriumsilikaatin annostuksenoptimointiin ja vaikutuksiin laboratorio- ja prosessioloissa, sekä kesäefektin vaikutuksen tutkimiseen kuidutuksessa ja flotaation eri vaiheissa. Natriumsilikaatin laboratoriotutkimuksessa havaittiin, että korkein vaaleus suhteellisesti pienimmällä laboratorioflotaation häviöllä saavutettiin korkeimmalla tutkitulla natriumsilikaatin annostuksella, joka oli 1,1 %. Korkea natriumsilikaattiannostus yhdistettyinä korkeisiin vetyperoksidiannostukseen, 0,5 %, sekä korkeaan kokonaisalkaliteettiin, 0.33 %, johti korkeimpaan massan vaaleuteen ja pienimpiin häviöihin. Laboratoriotutkimuksen pohjalta modifioidulla natriumsilikaatilla suoritettiin koeajoja prosessissa. Noin 1 % natriumsilikaatin annostuksella havaittiin parempi pH:n bufferointikyky, pienempi kalsiumkarbonaatin määrä flotaation primäärivaiheissa, sekä lievästi parempi massan vaaleus verrattuna prosessissa aiemmin käytettyyn standardinatriumsilikaattiin. Kesäefektitutkimuksessa havaittiin, että kesäefektillä on suurin vaikutus esiflotaation primäärivaiheeseen, sillä primäärivaiheessa kuitujen osuus on huomattavasti suurempi kuin sekundäärivaiheissa. Esiflotaation primäärivaiheen uusiomassojen laboratorioflotaatioiden avulla saavutettujen maksimivaaleuksien ero kesän ja talven välillä oli noin 1,5 %ISO. Kesäefektin ei havaittu suuresti vaikuttavan flotaation sekundäärivaiheisiin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tämän diplomityön tavoitteena oli sekundäärisen esiflotaation optimointi Stora Enso Sachsen GmbH:n tehtaalla. Optimoinnin muuttujana käytettiin vaahdon määrää ja optimointiparametreinä ISO-vaaleutta, saantoja sekä tuhkapitoisuutta. Lisäksi tutkittiin flotaatiosakeuden vaikutusta myös muihin tehtaan flotaatioprosesseihin. Kirjallisuusosassa tarkasteltiin flotaatiotapahtumaa, poistettavien partikkeleiden ja ilmakuplien kontaktia, vaahdon muodostumista sekä tärkeimpiä käytössä olevia siistausflotaattoreiden laiteratkaisuja. Kokeellisessa osassa tutkittiin flotaatiosakeuden pienetämisen vaikutuksia tehtaan flotaatioprosesseihin tuhkapitoisuuden, ISO-vaaleuden, valon sironta- ja valon absorpiokerrointen kannalta. Sekundäärisen esiflotaation optimonti suoritettiin muuttamalla vaahdon määrää kolmella erilaisella injektorin koolla, (8 mm, 10 mm ja 13 mm), joista keskimmäinen kasvattaa 30 % massan tilavuusvirtaa ilmapitoisuuden muodossa. Optimonnin tarkoituksena oli kasvattaa hyväksytyn massajakeen ISO-vaaleutta, sekä kasvattaa kuitu- ja kokonaissaantoa sekundäärisessä esiflotaatiossa. Flotaatiosakeuden pienentämisellä oli edullisia vaikutuksia ISO-vaaleuteen ja valon sirontakertoimeen kussakin flotaatiossa. Tuhkapitoisuus pieneni sekundäärisissä flotaatioissa enemmän sakeuden ollessa pienempi, kun taas primäärisissä flotaatiossa vaikutus oli päinvastainen. Valon absorptiokerroin parani jälkiflotaatioissa alhaisemmalla sakeudella, kun taas esiflotaatioissa vaikutus oli päinvastainen. Sekundäärisen esiflotaation optimoinnin tuloksena oli lähes 5 % parempi ISO-vaaleus hyväksytyssä massajakeessa. Kokonaissaanto parani optimoinnin myötä 5 % ja kuitusaanto 2 %. Saantojen nousu tuottaa vuosittaisia säästöjä siistauslaitoksen tuotantokapasiteetin noustessa 0,5 %. Tämän lisäksi sekundäärisessä esiflotaatiossa rejektoituvan massavirran pienentyminen tuottaa lisäsäästöjä tehtaan voimalaitoksella.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dissertation is based on four articles dealing with recalcitrant lignin water purification. Lignin, a complicated substance and recalcitrant to most treatment technologies, inhibits seriously pulp and paper industry waste management. Therefore, lignin is studied, using WO as a process method for its degradation. A special attention is paid to the improvement in biodegradability and the reduction of lignin content, since they have special importance for any following biological treatment. In most cases wet oxidation is not used as a complete ' mineralization method but as a pre treatment in order to eliminate toxic components and to reduce the high level of organics produced. The combination of wet oxidation with a biological treatment can be a good option due to its effectiveness and its relatively low technology cost. The literature part gives an overview of Advanced Oxidation Processes (AOPs). A hot oxidation process, wet oxidation (WO), is investigated in detail and is the AOP process used in the research. The background and main principles of wet oxidation, its industrial applications, the combination of wet oxidation with other water treatment technologies, principal reactions in WO, and key aspects of modelling and reaction kinetics are presented. There is also given a wood composition and lignin characterization (chemical composition, structure and origin), lignin containing waters, lignin degradation and reuse possibilities, and purification practices for lignin containing waters. The aim of the research was to investigate the effect of the operating conditions of WO, such as temperature, partial pressure of oxygen, pH and initial concentration of wastewater, on the efficiency, and to enhance the process and estimate optimal conditions for WO of recalcitrant lignin waters. Two different waters are studied (a lignin water model solution and debarking water from paper industry) to give as appropriate conditions as possible. Due to the great importance of re using and minimizing the residues of industries, further research is carried out using residual ash of an Estonian power plant as a catalyst in wet oxidation of lignin-containing water. Developing a kinetic model that includes in the prediction such parameters as TOC gives the opportunity to estimate the amount of emerging inorganic substances (degradation rate of waste) and not only the decrease of COD and BOD. The degradation target compound, lignin is included into the model through its COD value (CODligning). Such a kinetic model can be valuable in developing WO treatment processes for lignin containing waters, or other wastewaters containing one or more target compounds. In the first article, wet oxidation of "pure" lignin water was investigated as a model case with the aim of degrading lignin and enhancing water biodegradability. The experiments were performed at various temperatures (110 -190°C), partial oxygen pressures (0.5 -1.5 MPa) and pH (5, 9 and 12). The experiments showed that increasing the temperature notably improved the processes efficiency. 75% lignin reduction was detected at the lowest temperature tested and lignin removal improved to 100% at 190°C. The effect of temperature on the COD removal rate was lower, but clearly detectable. 53% of organics were oxidized at 190°C. The effect of pH occurred mostly on lignin removal. Increasing the pH enhanced the lignin removal efficiency from 60% to nearly 100%. A good biodegradability ratio (over 0.5) was generally achieved. The aim of the second article was to develop a mathematical model for "pure" lignin wet oxidation using lumped characteristics of water (COD, BOD, TOC) and lignin concentration. The model agreed well with the experimental data (R2 = 0.93 at pH 5 and 12) and concentration changes during wet oxidation followed adequately the experimental results. The model also showed correctly the trend of biodegradability (BOD/COD) changes. In the third article, the purpose of the research was to estimate optimal conditions for wet oxidation (WO) of debarking water from the paper industry. The WO experiments were' performed at various temperatures, partial oxygen pressures and pH. The experiments showed that lignin degradation and organics removal are affected remarkably by temperature and pH. 78-97% lignin reduction was detected at different WO conditions. Initial pH 12 caused faster removal of tannins/lignin content; but initial pH 5 was more effective for removal of total organics, represented by COD and TOC. Most of the decrease in organic substances concentrations occurred in the first 60 minutes. The aim of the fourth article was to compare the behaviour of two reaction kinetic models, based on experiments of wet oxidation of industrial debarking water under different conditions. The simpler model took into account only the changes in COD, BOD and TOC; the advanced model was similar to the model used in the second article. Comparing the results of the models, the second model was found to be more suitable for describing the kinetics of wet oxidation of debarking water. The significance of the reactions involved was compared on the basis of the model: for instance, lignin degraded first to other chemically oxidizable compounds rather than directly to biodegradable products. Catalytic wet oxidation of lignin containing waters is briefly presented at the end of the dissertation. Two completely different catalysts were used: a commercial Pt catalyst and waste power plant ash. CWO showed good performance using 1 g/L of residual ash gave lignin removal of 86% and COD removal of 39% at 150°C (a lower temperature and pressure than with WO). It was noted that the ash catalyst caused a remarkable removal rate for lignin degradation already during the pre heating for `zero' time, 58% of lignin was degraded. In general, wet oxidation is not recommended for use as a complete mineralization method, but as a pre treatment phase to eliminate toxic or difficultly biodegradable components and to reduce the high level of organics. Biological treatment is an appropriate post treatment method since easily biodegradable organic matter remains after the WO process. The combination of wet oxidation with subsequent biological treatment can be an effective option for the treatment of lignin containing waters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this master’s thesis was to study ways to increase the operating cost-efficiency of the hydrogen production process by optimizing the process parameters while, at the same time, maintaining plant reliability and safety. The literature part reviewed other hydrogen production and purification processes as well as raw material alternatives for hydrogen production. The experimental part of the master’s thesis was conducted at Solvay Chemicals Finland Oy’s hydrogen plant in spring 2012. It was performed by changing the process parameters, first, one by one, aiming for a more efficient process with clean product gas and lower natural gas consumption. The values of the process parameters were tested based on the information from the literature, process simulation and experiences of previous similar processes. The studied parameters were reformer outlet temperature, shift converter inlet temperature and steam/carbon ratio. The results show that the optimal process conditions are a lower steam/carbon ratio and reformer outlet temperature than the current values of 3.0 and 798 °C. An increase/decrease in the shift conversion inlet temperature does not affect natural gas consumption, but it has an effect on minimizing the process steam overload.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Torrefaction is one of the pretreatment technologies to enhance the fuel characteristics of biomass. The efficient and continuous operation of a torrefaction reactor, in the commercial scale, demands a secure biomass supply, in addition to adequate source of heat. Biorefinery plants or biomass-fuelled steam power plants have the potential to integrate with the torrefaction reactor to exchange heat and mass, using available infrastructure and energy sources. The technical feasibility of this integration is examined in this study. A new model for the torrefaction process is introduced and verified by the available experimental data. The torrefaction model is then integrated in different steam power plants to simulate possible mass and energy exchange between the reactor and the plants. The performance of the integrated plant is investigated for different configurations and the results are compared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis focuses on the water chemistry of the experimental test facilities and their reference VVER reactors. The main objective of the thesis is to provide recommendations for water chemistry management for laboratory facilities (VEERA, PACTEL) simulating the VVERs and for the large future facilities of the Lappeenranta University of Technology. In the beginning, the concept of nuclear power generation and the applicability of the nuclear power usage is discussed. Next, different water chemistry and water purification systems in primary and secondary circuits currently used at the power plant have been outlined. Also the construction geometry and design of test facilities PACTEL and VEERA, as well as the operation principles of their main equipment has been described. Finally, the appropriate water chemistry and water treatment system have been proposed for the existing and future experimental facilities of LUT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tannins, typically segregated into two major groups, the hydrolyzable tannins (HTs) and the proanthocyanidins (PAs), are plant polyphenolic secondary metabolites found throughout the plant kingdom. On one hand, tannins may cause harmful nutritional effects on herbivores, for example insects, and hence they work as plants’ defense against plant-eating animals. On the other hand, they may affect positively some herbivores, such as mammals, for example by their antioxidant, antimicrobial, anti-inflammatory or anticarcinogenic activities. This thesis focuses on understanding the bioactivity of plant tannins, their anthelmintic properties and the tools used for the qualitative and quantitative analysis of this endless source of structural diversity. The first part of the experimental work focused on the development of ultra-high performance liquid chromatography−tandem mass spectrometry (UHPLC-MS/MS) based methods for the rapid fingerprint analysis of bioactive polyphenols, especially tannins. In the second part of the experimental work the in vitro activity of isolated and purified HTs and their hydrolysis product, gallic acid, was tested against egg hatching and larval motility of two larval developmental stages, L1 and L2, of a common ruminant gastrointestinal parasite, Haemonchus contortus. The results indicated clear relationships between the HT structure and the anthelmintic activity. The activity of the studied compounds depended on many structural features, including size, functional groups present in the structure, and the structural rigidness. To further understand tannin bioactivity on a molecular level, the interaction between bovine serum albumin (BSA), and seven HTs and epigallocatechin gallate was examined. The objective was to define the effect of pH on the formation on tannin–protein complexes and to evaluate the stability of the formed complexes by gel electrophoresis and MALDI-TOF-MS. The results indicated that more basic pH values had a stabilizing effect on the tannin–protein complexes and that the tannin oxidative activity was directly linked with their tendency to form covalently stabilized complexes with BSA at increased pH.