14 resultados para equilibrium partition coefficient
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Mikroemulsiosähkökineettinen kromatografia on sähköavusteinen erotusmenetelmä. Yhdisteiden erottuminen tapahtuu mikroemulsiopisaroiden vaikutuksesta, kun nanometrien kokoiset öljypisarat ovat dispergoituneena veteen valmistettuun puskuriliuokseen. Yleensä mikroemulsiot valmistetaan raakaöljynkin sisältämistä hiilivedyistä, joita ovat esimerkiksi oktaani ja heptaani. Työn kokeellisessa osassa perehdyttiin seitsemän hydrofobisen ja varauksettoman steroidihormonin erottamiseen mikroemulsioliuoksessa kapillaarielektroforeesitekniikalla. Työssä valmistettiin öljyistä koostuvia mikroemulsioita, joista osan koostumus valittiin kirjallisuuden perusteella. Työssä kokeiltiin myös uusia mikroemulsiokoostumuksia, joissa käytettiin luonnosta peräisin olevia öljyjä: rypsi-, oliivi-, pellavansiemen- ja saksanpähkinäöljyä. Seitsemästä steroidihormonista viisi yhdistettä saatiin erottumaan optimoiduilla menetelmillä. Steroidien erotus perustuu niiden oktanoli-vesi jakautumiskertoimien avulla saatavaan migraatiojärjestykseen. Mikroemulsiossa, jossa käytettiin 1-oktanolia, steroidihormonit erottuivat nopeammin, kuin saksanpähkinäöljyä käytettäessä. Lyhyimmät migraatioajat saatiin mikroemulsiolla, jossa öljyfaasina käytettiin 1-heksanolia ja viidentenä yhdisteenä asetonitriiliä. Selektiivisimmillään menetelmä on, kun erotus tapahtuu liuoksessa, joka koostuu etyyliasetaatista, natriumdodekyylisulfaatista, butanolista, asetonitriilistä ja natriumtetraboraatista. Toteamisrajat tutkituille steroidihormoneille olivat 0,20–0,43 mg/L mikroemulsioissa.
Resumo:
The steam turbines play a significant role in global power generation. Especially, research on low pressure (LP) steam turbine stages is of special importance for steam turbine man- ufactures, vendors, power plant owners and the scientific community due to their lower efficiency than the high pressure steam turbine stages. Because of condensation, the last stages of LP turbine experience irreversible thermodynamic losses, aerodynamic losses and erosion in turbine blades. Additionally, an LP steam turbine requires maintenance due to moisture generation, and therefore, it is also affecting on the turbine reliability. Therefore, the design of energy efficient LP steam turbines requires a comprehensive analysis of condensation phenomena and corresponding losses occurring in the steam tur- bine either by experiments or with numerical simulations. The aim of the present work is to apply computational fluid dynamics (CFD) to enhance the existing knowledge and understanding of condensing steam flows and loss mechanisms that occur due to the irre- versible heat and mass transfer during the condensation process in an LP steam turbine. Throughout this work, two commercial CFD codes were used to model non-equilibrium condensing steam flows. The Eulerian-Eulerian approach was utilised in which the mix- ture of vapour and liquid phases was solved by Reynolds-averaged Navier-Stokes equa- tions. The nucleation process was modelled with the classical nucleation theory, and two different droplet growth models were used to predict the droplet growth rate. The flow turbulence was solved by employing the standard k-ε and the shear stress transport k-ω turbulence models. Further, both models were modified and implemented in the CFD codes. The thermodynamic properties of vapour and liquid phases were evaluated with real gas models. In this thesis, various topics, namely the influence of real gas properties, turbulence mod- elling, unsteadiness and the blade trailing edge shape on wet-steam flows, are studied with different convergent-divergent nozzles, turbine stator cascade and 3D turbine stator-rotor stage. The simulated results of this study were evaluated and discussed together with the available experimental data in the literature. The grid independence study revealed that an adequate grid size is required to capture correct trends of condensation phenomena in LP turbine flows. The study shows that accurate real gas properties are important for the precise modelling of non-equilibrium condensing steam flows. The turbulence modelling revealed that the flow expansion and subsequently the rate of formation of liquid droplet nuclei and its growth process were affected by the turbulence modelling. The losses were rather sensitive to turbulence modelling as well. Based on the presented results, it could be observed that the correct computational prediction of wet-steam flows in the LP turbine requires the turbulence to be modelled accurately. The trailing edge shape of the LP turbine blades influenced the liquid droplet formulation, distribution and sizes, and loss generation. The study shows that the semicircular trailing edge shape predicted the smallest droplet sizes. The square trailing edge shape estimated greater losses. The analysis of steady and unsteady calculations of wet-steam flow exhibited that in unsteady simulations, the interaction of wakes in the rotor blade row affected the flow field. The flow unsteadiness influenced the nucleation and droplet growth processes due to the fluctuation in the Wilson point.
Resumo:
Selostus: Pellavan ja kuituhampun korren jakeiden tasapainokosteus
Resumo:
Abstract
Resumo:
The dynamical properties ofshaken granular materials are important in many industrial applications where the shaking is used to mix, segregate and transport them. In this work asystematic, large scale simulation study has been performed to investigate the rheology of dense granular media, in the presence of gas, in a three dimensional vertical cylinder filled with glass balls. The base wall of the cylinder is subjected to sinusoidal oscillation in the vertical direction. The viscoelastic behavior of glass balls during a collision, have been studied experimentally using a modified Newton's Cradle device. By analyzing the results of the measurements, using numerical model based on finite element method, the viscous damping coefficient was determinedfor the glass balls. To obtain detailed information about the interparticle interactions in a shaker, a simplified model for collision between particles of a granular material was proposed. In order to simulate the flow of surrounding gas, a formulation of the equations for fluid flow in a porous medium including particle forces was proposed. These equations are solved with Large Eddy Simulation (LES) technique using a subgrid-model originally proposed for compressible turbulent flows. For a pentagonal prism-shaped container under vertical vibrations, the results show that oscillon type structures were formed. Oscillons are highly localized particle-like excitations of the granular layer. This self-sustaining state was named by analogy with its closest large-scale analogy, the soliton, which was first documented by J.S. Russell in 1834. The results which has been reportedbyBordbar and Zamankhan(2005b)also show that slightly revised fluctuation-dissipation theorem might apply to shaken sand, which appears to be asystem far from equilibrium and could exhibit strong spatial and temporal variations in quantities such as density and local particle velocity. In this light, hydrodynamic type continuum equations were presented for describing the deformation and flow of dense gas-particle mixtures. The constitutive equation used for the stress tensor provides an effective viscosity with a liquid-like character at low shear rates and a gaseous-like behavior at high shear rates. The numerical solutions were obtained for the aforementioned hydrodynamic equations for predicting the flow dynamics ofdense mixture of gas and particles in vertical cylindrical containers. For a heptagonal prism shaped container under vertical vibrations, the model results were found to predict bubbling behavior analogous to those observed experimentally. This bubbling behavior may be explained by the unusual gas pressure distribution found in the bed. In addition, oscillon type structures were found to be formed using a vertically vibrated, pentagonal prism shaped container in agreement with computer simulation results. These observations suggest that the pressure distribution plays a key rolein deformation and flow of dense mixtures of gas and particles under vertical vibrations. The present models provide greater insight toward the explanation of poorly understood hydrodynamic phenomena in the field of granular flows and dense gas-particle mixtures. The models can be generalized to investigate the granular material-container wall interactions which would be an issue of high interests in the industrial applications. By following this approach ideal processing conditions and powder transport can be created in industrial systems.
Resumo:
The purpose of this study was to investigate some important features of granular flows and suspension flows by computational simulation methods. Granular materials have been considered as an independent state ofmatter because of their complex behaviors. They sometimes behave like a solid, sometimes like a fluid, and sometimes can contain both phases in equilibrium. The computer simulation of dense shear granular flows of monodisperse, spherical particles shows that the collisional model of contacts yields the coexistence of solid and fluid phases while the frictional model represents a uniform flow of fluid phase. However, a comparison between the stress signals from the simulations and experiments revealed that the collisional model would result a proper match with the experimental evidences. Although the effect of gravity is found to beimportant in sedimentation of solid part, the stick-slip behavior associated with the collisional model looks more similar to that of experiments. The mathematical formulations based on the kinetic theory have been derived for the moderatesolid volume fractions with the assumption of the homogeneity of flow. In orderto make some simulations which can provide such an ideal flow, the simulation of unbounded granular shear flows was performed. Therefore, the homogeneous flow properties could be achieved in the moderate solid volume fractions. A new algorithm, namely the nonequilibrium approach was introduced to show the features of self-diffusion in the granular flows. Using this algorithm a one way flow can beextracted from the entire flow, which not only provides a straightforward calculation of self-diffusion coefficient but also can qualitatively determine the deviation of self-diffusion from the linear law at some regions nearby the wall inbounded flows. Anyhow, the average lateral self-diffusion coefficient, which was calculated by the aforementioned method, showed a desirable agreement with thepredictions of kinetic theory formulation. In the continuation of computer simulation of shear granular flows, some numerical and theoretical investigations were carried out on mass transfer and particle interactions in particulate flows. In this context, the boundary element method and its combination with the spectral method using the special capabilities of wavelets have been introduced as theefficient numerical methods to solve the governing equations of mass transfer in particulate flows. A theoretical formulation of fluid dispersivity in suspension flows revealed that the fluid dispersivity depends upon the fluid properties and particle parameters as well as the fluid-particle and particle-particle interactions.
Resumo:
Työssä tutkittiin synteesikaasun komponenttien: hiilimonoksidin, vedyn ja hiilidioksidin liukoisuutta ja aineensiirtonopeutta fermentointiliuokseen. Kirjallisuusosassa käsitellään kaasujen liukoisuuksiin ja kaasu-nesteaineensiirtoon vaikuttavia tekijöitä ja esitellään korrelaatioita, jotka on kehitetty volumetrisen aineensiirtokertoimen ennustamiseen sekoitetussa fermentorissa. Kirjallisuus-osassa esitetään myös synteesikaasun komponenttien liukoisuudet veteen, etanoliin ja etikkahappoon 37 ºC lämpötilassa ja esitellään Flowbat-simulointiohjelman MHV2-mallin käyttöä kaasu-neste tasapainojen mallin-nuksessa. Työn kokeellisessa osassa tutkittiin synteesikaasun komponenttien liukoisuuksia veteen ja kasvatusalustaan sekä kehitettiin mittausmenetelmä kaasu-neste tasapainojen mittaukseen. Tasapainomittauksissa tutkittiin etanolin ja etikkahapon konsentraatioiden vaikutusta synteesikaasun liukoisuuteen. Lisäksi mallinnettiin kaasu-neste tasapainoja monikomponenttisysteemeissä MHV2-mallin avulla. Kokeellisen osan aineensiirtomittauksissa tutkittiin sekoitusnopeuden ja kaasun volumetrisen syöttönopeuden vaikutusta hiilimonoksidin ja vedyn volumetriseen aineensiirtokertoimeen kLa kahden litran tilavuuksisessa laboratoriofermentorissa. Mittaustulosten perusteella kasvatusalustan komponentit vaikuttavat merkittävästi hiilidioksidin liukoisuuteen. Lisäys etanolin ja etikkahapon konsentraatioissa parantaa hiilimonoksidin liukoisuutta kasvatusalustaan. Kaasun volumetrinen syöttönopeus ja sekoitusnopeus vaikuttavat voimakkaasti volumetrisen aineensiirtokertoimen arvoon. Tutkitussa systeemissä korkein teoreettinen solutiheys, joka voitiin saavuttaa suurimmalla hiilimonoksidin aineensiirto-nopeudella, oli 3 g/L. Tämä on kaksinkertainen verrattuna aiemmissa VTT:n kokeissa saavutettuihin solutiheyksiin.
Resumo:
Bioetanolin tuotanto kiinnostaa monissa maissa johtuen kansainvälisissä sopimuksissa määritellyistä ilmastotavoitteista. Työssä tutkittiin laboratorio-oloissa ioninvaihtohartsien ominaisuuksien ja erotuksen olosuhteiden vaikutusta rikkihapon ja glukoosin kromatografiseen erotukseen. Tehokkaimmaksi hartsiksi osoittautui polysulfonoitu mesohuokoinen vahva kationinvaihtohartsi Finex CS100C. CS100C:lla voitiin erottaa rikkihappoa ja glukoosia tehokkaimmin korkeissa 25 p-% ja 36 p-% glukoosi- ja rikkihappo-pitoisuuksissa. Lisäksi sillä havaittiin suurin tuotto simuloidussa liikkuvassa pedissä. Yhdessä kolonnissa suoritetuissa erotuskokeissa tutkittiin hartsien erotuskykyä rikkihapolle ja glukoosille sekä virtausnopeuden vaikutusta erotukseen lämpötilassa 22 °C. Saatujen tulosten pohjalta valittiin CS11GC, CS16GC ja CS100C tarkempaan isotermin määritykseen ja simulointiin hyvän erotuskyvyn sekä keskinäisten erojen takia. Adsorptioisotermit määritettiin kolonnikokein sekä 22 °C:n että 50 °C:n lämpötilassa. Isotermeistä havaittiin, että tasapaino kiinto- ja liuosfaasien välille saavutetaan rikkihapolla alhaisella 1 cm3/min virtausnopeudella varmemmin kuin suuremmalla 2,5 cm3/min virtausnopeudella. 50 °C:n lämpötilassa hapon ja glukoosin isotermit olivat jyrkempiä kuin 22 °C:n lämpötilassa. Määritettyihin hapon ja sokerin isotermeihin sovitettiin mallit, joiden parametreja käytettiin yksittäisen kolonnin simulointiin. Simuloinnissa oli estimoitavia parametreja yhdellä kolonnilla aineensiirtokertoimet sekä läpäisykäyristä määritetyt isotermiparametrit glukoosille sekä rikkihapolle ja SMB–erotuksessa vyöhykkeiden 2 ja 3 suhteelliset virtausnopeudet. Siirryttäessä lämpötilojen 22 °C ja 50 °C välillä hartsien parametrit muuttuivat sokerille täysin ja hapolle vain aineensiirtokertoimen osalta. CS100C oli tehokkain SMB–erotuksessa korkeimmalla 0,11 cm3/min tuottavuudella 95 %:n saannon saavuttamiseksi 95 % tuotepuhtaudella raffinaatissa ja ekstraktissa.
Resumo:
In this thesis, general approach is devised to model electrolyte sorption from aqueous solutions on solid materials. Electrolyte sorption is often considered as unwanted phenomenon in ion exchange and its potential as an independent separation method has not been fully explored. The solid sorbents studied here are porous and non-porous organic or inorganic materials with or without specific functional groups attached on the solid matrix. Accordingly, the sorption mechanisms include physical adsorption, chemisorption on the functional groups and partition restricted by electrostatic or steric factors. The model is tested in four Cases Studies dealing with chelating adsorption of transition metal mixtures, physical adsorption of metal and metalloid complexes from chloride solutions, size exclusion of electrolytes in nano-porous materials and electrolyte exclusion of electrolyte/non-electrolyte mixtures. The model parameters are estimated using experimental data from equilibrium and batch kinetic measurements, and they are used to simulate actual single-column fixed-bed separations. Phase equilibrium between the solution and solid phases is described using thermodynamic Gibbs-Donnan model and various adsorption models depending on the properties of the sorbent. The 3-dimensional thermodynamic approach is used for volume sorption in gel-type ion exchangers and in nano-porous adsorbents, and satisfactory correlation is obtained provided that both mixing and exclusion effects are adequately taken into account. 2-Dimensional surface adsorption models are successfully applied to physical adsorption of complex species and to chelating adsorption of transition metal salts. In the latter case, comparison is also made with complex formation models. Results of the mass transport studies show that uptake rates even in a competitive high-affinity system can be described by constant diffusion coefficients, when the adsorbent structure and the phase equilibrium conditions are adequately included in the model. Furthermore, a simplified solution based on the linear driving force approximation and the shrinking-core model is developed for very non-linear adsorption systems. In each Case Study, the actual separation is carried out batch-wise in fixed-beds and the experimental data are simulated/correlated using the parameters derived from equilibrium and kinetic data. Good agreement between the calculated and experimental break-through curves is usually obtained indicating that the proposed approach is useful in systems, which at first sight are very different. For example, the important improvement in copper separation from concentrated zinc sulfate solution at elevated temperatures can be correctly predicted by the model. In some cases, however, re-adjustment of model parameters is needed due to e.g. high solution viscosity.
Resumo:
Asymmetric synthesis using modified heterogeneous catalysts has gained lots of interest in the production of optically pure chemicals, such as pharmaceuticals, nutraceuticals, fragrances and agrochemicals. Heterogeneous modified catalysts capable of inducing high enantioselectivities are preferred in industrial scale due to their superior separation and handling properties. The topic has been intensively investigated both in industry and academia. The enantioselective hydrogenation of ethyl benzoylformate (EBF) to (R)-ethyl mandelate over (-)-cinchonidine (CD)-modified Pt/Al2O3 catalyst in a laboratory-scale semi-batch reactor was studied as a function of modifier concentration, reaction temperature, stirring rate and catalyst particle size. The main product was always (R)-ethyl mandelate while small amounts of (S)-ethyl mandelate were obtained as by product. The kinetic results showed higher enantioselectivity and lower initial rates approaching asymptotically to a constant value as the amount of modifier was increased. Additionally, catalyst deactivation due to presence of impurities in the feed was prominent in some cases; therefore activated carbon was used as a cleaning agent of the raw material to remove impurities prior to catalyst addition. Detailed characterizations methods (SEM, EDX, TPR, BET, chemisorption, particle size distribution) of the catalysts were carried out. Solvent effects were also studied in the semi-batch reactor. Solvents with dielectric constant (e) between 2 and 25 were applied. The enantiomeric excess (ee) increased with an increase of the dielectric coefficient up to a maximum followed by a nonlinear decrease. A kinetic model was proposed for the enantioselectivity dependence on the dielectric constant based on the Kirkwood treatment. The non-linear dependence of ee on (e) successfully described the variation of ee in different solvents. Systematic kinetic experiments were carried out in the semi-batch reactor. Toluene was used as a solvent. Based on these results, a kinetic model based on the assumption of different number of sites was developed. Density functional theory calculations were applied to study the energetics of the EBF adsorption on pure Pt(1 1 1). The hydrogenation rate constants were determined along with the adsorption parameters by non-linear regression analysis. A comparison between the model and the experimental data revealed a very good correspondence. Transient experiments in a fixed-bed reactor were also carried out in this work. The results demonstrated that continuous enantioselective hydrogenation of EBF in hexane/2-propanol 90/10 (v/v) is possible and that continuous feeding of (-)-cinchonidine is needed to maintain a high steady-state enantioselectivity. The catalyst showed a good stability and high enantioselectivity was achieved in the fixed-bed reactor. Chromatographic separation of (R)- and (S)-ethyl mandelate originating from the continuous reactor was investigated. A commercial column filled with a chiral resin was chosen as a perspective preparative-scale adsorbent. Since the adsorption equilibrium isotherms were linear within the entire investigated range of concentrations, they were determined by pulse experiments for the isomers present in a post-reaction mixture. Breakthrough curves were measured and described successfully by the dispersive plug flow model with a linear driving force approximation. The focus of this research project was the development of a new integrated production concept of optically active chemicals by combining heterogeneous catalysis and chromatographic separation technology. The proposed work is fundamental research in advanced process technology aiming to improve efficiency and enable clean and environmentally benign production of enantiomeric pure chemicals.
Resumo:
Crystal properties, product quality and particle size are determined by the operating conditions in the crystallization process. Thus, in order to obtain desired end-products, the crystallization process should be effectively controlled based on reliable kinetic information, which can be provided by powerful analytical tools such as Raman spectrometry and thermal analysis. The present research work studied various crystallization processes such as reactive crystallization, precipitation with anti-solvent and evaporation crystallization. The goal of the work was to understand more comprehensively the fundamentals, phenomena and utilizations of crystallization, and establish proper methods to control particle size distribution, especially for three phase gas-liquid-solid crystallization systems. As a part of the solid-liquid equilibrium studies in this work, prediction of KCl solubility in a MgCl2-KCl-H2O system was studied theoretically. Additionally, a solubility prediction model by Pitzer thermodynamic model was investigated based on solubility measurements of potassium dihydrogen phosphate with the presence of non-electronic organic substances in aqueous solutions. The prediction model helps to extend literature data and offers an easy and economical way to choose solvent for anti-solvent precipitation. Using experimental and modern analytical methods, precipitation kinetics and mass transfer in reactive crystallization of magnesium carbonate hydrates with magnesium hydroxide slurry and CO2 gas were systematically investigated. The obtained results gave deeper insight into gas-liquid-solid interactions and the mechanisms of this heterogeneous crystallization process. The research approach developed can provide theoretical guidance and act as a useful reference to promote development of gas-liquid reactive crystallization. Gas-liquid mass transfer of absorption in the presence of solid particles in a stirred tank was investigated in order to gain understanding of how different-sized particles interact with gas bubbles. Based on obtained volumetric mass transfer coefficient values, it was found that the influence of the presence of small particles on gas-liquid mass transfer cannot be ignored since there are interactions between bubbles and particles. Raman spectrometry was successfully applied for liquid and solids analysis in semi-batch anti-solvent precipitation and evaporation crystallization. Real-time information such as supersaturation, formation of precipitates and identification of crystal polymorphs could be obtained by Raman spectrometry. The solubility prediction models, monitoring methods for precipitation and empirical model for absorption developed in this study together with the methodologies used gives valuable information for aspects of industrial crystallization. Furthermore, Raman analysis was seen to be a potential controlling method for various crystallization processes.