21 resultados para envioronmental gradients
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
In nature, variation for example in herbivory, wind exposure, moisture and pollution impact often creates variation in physiological stress and plant productivity. This variation is seldom clear-cut, but rather results in clines of decreasing growth and productivity towards the high-stress end. These clines of unidirectionally changing stress are generally known as ‘stress gradients’. Through its effect on plant performance, stress has the capacity to fundamentally alter the ecological relationships between individuals, and through variation in survival and reproduction it also causes evolutionary change, i.e. local adaptations to stress and eventually speciation. In certain conditions local adaptations to environmental stress have been documented in a matter of just a few generations. In plant-plant interactions, intensities of both negative interactions (competition) and positive ones (facilitation) are expected to vary along stress gradients. The stress-gradient hypothesis (SGH) suggests that net facilitation will be strongest in conditions of high biotic and abiotic stress, while a more recent ‘humpback’ model predicts strongest net facilitation at intermediate levels of stress. Plant interactions on stress gradients, however, are affected by a multitude of confounding factors, making studies of facilitation-related theories challenging. Among these factors are plant ontogeny, spatial scale, and local adaptation to stress. The last of these has very rarely been included in facilitation studies, despite the potential co-occurrence of local adaptations and changes in net facilitation in stress gradients. Current theory would predict both competitive effects and facilitative responses to be weakest in populations locally adapted to withstand high abiotic stress. This thesis is based on six experiments, conducted both in greenhouses and in the field in Russia, Norway and Finland, with mountain birch (Betula pubescens subsp. czerepanovii) as the model species. The aims were to study potential local adaptations in multiple stress gradients (both natural and anthropogenic), changes in plant-plant interactions under conditions of varying stress (as predicted by SGH), potential mechanisms behind intraspecific facilitation, and factors confounding plant-plant facilitation, such as spatiotemporal, ontogenetic, and genetic differences. I found rapid evolutionary adaptations (occurring within a time-span of 60 to 70 years) towards heavy-metal resistance around two copper-nickel smelters, a phenomenon that has resulted in a trade-off of decreased performance in pristine conditions. Heavy-metal-adapted individuals had lowered nickel uptake, indicating a possible mechanism behind the detected resistance. Seedlings adapted to heavy-metal toxicity were not co-resistant to others forms of abiotic stress, but showed co-resistance to biotic stress by being consumed to a lesser extent by insect herbivores. Conversely, populations from conditions of high natural stress (wind, drought etc.) showed no local adaptations, despite much longer evolutionary time scales. Due to decreasing emissions, I was unable to test SGH in the pollution gradients. In natural stress gradients, however, plant performance was in accordance with SGH, with the strongest host-seedling facilitation found at the high-stress sites in two different stress gradients. Factors confounding this pattern included (1) plant size / ontogenetic status, with seedling-seedling interactions being competition dominated and host-seedling interactions potentially switching towards competition with seedling growth, and (2) spatial distance, with competition dominating at very short planting distances, and facilitation being strongest at a distance of circa ¼ benefactor height. I found no evidence for changes in facilitation with respect to the evolutionary histories of plant populations. Despite the support for SGH, it may be that the ‘humpback’ model is more relevant when the main stressor is resource-related, while what I studied were the effects of ‘non-resource’ stressors (i.e. heavy-metal pollution and wind). The results have potential practical applications: the utilisation of locally adapted seedlings and plant facilitation may increase the success of future restoration efforts in industrial barrens as well as in other wind-exposed sites. The findings also have implications with regard to the effects of global change in subarctic environments: the documented potential by mountain birch for rapid evolutionary change, together with the general lack of evolutionary ‘dead ends’, due to not (over)specialising to current natural conditions, increase the chances of this crucial forest-forming tree persisting even under the anticipated climate change.
Resumo:
Macroalgae are the main primary producers of the temperate rocky shores providing a three-dimensional habitat, food and nursery grounds for many other species. During the past decades, the state of the coastal waters has deteriorated due to increasing human pressures, resulting in dramatic changes in coastal ecosystems, including macroalgal communities. To reverse the deterioration of the European seas, the EU has adopted the Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD), aiming at improved status of the coastal waters and the marine environment. Further, the Habitats Directive (HD) calls for the protection of important habitats and species (many of which are marine) and the Maritime Spatial Planning Directive for sustainability in the use of resources and human activities at sea and by the coasts. To efficiently protect important marine habitats and communities, we need knowledge on their spatial distribution. Ecological knowledge is also needed to assess the status of the marine areas by involving biological indicators, as required by the WFD and the MSFD; knowledge on how biota changes with human-induced pressures is essential, but to reliably assess change, we need also to know how biotic communities vary over natural environmental gradients. This is especially important in sea areas such as the Baltic Sea, where the natural environmental gradients create substantial differences in biota between areas. In this thesis, I studied the variation occurring in macroalgal communities across the environmental gradients of the northern Baltic Sea, including eutrophication induced changes. The aim was to produce knowledge to support the reliable use of macroalgae as indicators of ecological status of the marine areas and to test practical metrics that could potentially be used in status assessments. Further, the aim was to develop a methodology for mapping the HD Annex I habitat reefs, using the best available data on geology and bathymetry. The results showed that the large-scale variation in the macroalgal community composition of the northern Baltic Sea is largely driven by salinity and exposure. Exposure is important also on smaller spatial scales, affecting species occurrence, community structure and depth penetration of algae. Consequently, the natural variability complicates the use of macroalgae as indicators of human-induced changes. Of the studied indicators, the number of perennial algal species, the perennial cover, the fraction of annual algae, and the lower limit of occurrence of red and brown perennial algae showed potential as usable indicators of ecological status. However, the cumulated cover of algae, commonly used as an indicator in the fully marine environments, showed low responses to eutrophication in the area. Although the mere occurrence of perennial algae did not show clear indicator potential, a distinct discrepancy in the occurrence of bladderwrack, Fucus vesiculosus, was found between two areas with differing eutrophication history, the Bothnian Sea and the Archipelago Sea. The absence of Fucus from many potential sites in the outer Archipelago Sea is likely due to its inability to recover from its disappearance from the area 30-40 years ago, highlighting the importance of past events in macroalgal occurrence. The methodology presented for mapping the potential distribution and the ecological value of reefs showed, that relatively high accuracy in mapping can be achieved by combining existing available data, and the maps produced serve as valuable background information for more detailed surveys. Taken together, the results of the theses contribute significantly to the knowledge on macroalgal communities of the northern Baltic Sea that can be directly applied in various management contexts.
Resumo:
Abstract
Resumo:
Convective transport, both pure and combined with diffusion and reaction, can be observed in a wide range of physical and industrial applications, such as heat and mass transfer, crystal growth or biomechanics. The numerical approximation of this class of problemscan present substantial difficulties clue to regions of high gradients (steep fronts) of the solution, where generation of spurious oscillations or smearing should be precluded. This work is devoted to the development of an efficient numerical technique to deal with pure linear convection and convection-dominated problems in the frame-work of convection-diffusion-reaction systems. The particle transport method, developed in this study, is based on using rneshless numerical particles which carry out the solution along the characteristics defining the convective transport. The resolution of steep fronts of the solution is controlled by a special spacial adaptivity procedure. The serni-Lagrangian particle transport method uses an Eulerian fixed grid to represent the solution. In the case of convection-diffusion-reaction problems, the method is combined with diffusion and reaction solvers within an operator splitting approach. To transfer the solution from the particle set onto the grid, a fast monotone projection technique is designed. Our numerical results confirm that the method has a spacial accuracy of the second order and can be faster than typical grid-based methods of the same order; for pure linear convection problems the method demonstrates optimal linear complexity. The method works on structured and unstructured meshes, demonstrating a high-resolution property in the regions of steep fronts of the solution. Moreover, the particle transport method can be successfully used for the numerical simulation of the real-life problems in, for example, chemical engineering.
Resumo:
In this thesis, the magnetic field control of convection instabilities and heat and mass transfer processesin magnetic fluids have been investigated by numerical simulations and theoretical considerations. Simulation models based on finite element and finite volume methods have been developed. In addition to standard conservation equations, themagnetic field inside the simulation domain is calculated from Maxwell equations and the necessary terms to take into account for the magnetic body force and magnetic dissipation have been added to the equations governing the fluid motion.Numerical simulations of magnetic fluid convection near the threshold supportedexperimental observations qualitatively. Near the onset of convection the competitive action of thermal and concentration density gradients leads to mostly spatiotemporally chaotic convection with oscillatory and travelling wave regimes, previously observed in binary mixtures and nematic liquid crystals. In many applications of magnetic fluids, the heat and mass transfer processes including the effects of external magnetic fields are of great importance. In addition to magnetic fluids, the concepts and the simulation models used in this study may be applied also to the studies of convective instabilities in ordinary fluids as well as in other binary mixtures and complex fluids.
Resumo:
Diplomityön tavoitteena oli kokeellisen tutkimuksen keinoin selvittää juotettujen levylämmönsiirtimien levypakkarakenteessa virtausten käyttäytyminen ja jakautuminen sekä löytää ideoita ja kehitysehdotuksia levylämmönsiirtimen levypakan ja levyprofiilin kehittämiseksi. Kokeellinen tutkimus suoritettiin Oy Danfoss Ab LPM:n levylämmönsiirtimien tutkimuslaboratoriossa. Virtausjakauman tutkimusta varten suunniteltiin ja valittiin tutkimuslaitteisto, joka koostui termoelementtiantureista, tiedonkeruulaitteistosta sekä ohjelmistosta. Lämmönsiirtimistä mitattiin ensiö- ja toisiopuolen tilavuusvirrat ja painehäviöt sekä lämpötilat ennen ja jälkeen lämmönsiirtimen. Tutkimuslaitteiston avulla mitattiin lämpötiloja lämmönsiirtimen sisältä levyväleistä. Mittaukset suoritettiin neljällä levypakkarakenteella useilla massavirran arvoilla. Mittaustuloksista määritettiin levylämmönsiirtimien lämpö- ja virtaustekniset ominaisuudet nesteen Reynoldsin luvun funktiona sekä selvitettiin nesteen virtausjakaumat. Mittaustuloksien perusteella laskettuja virtausjakauman arvoja verrattiin teorian mukaan laskettuihin jakaumiin. Mitatuista siirtimistä lasketut massavirrat viittaavat siihen, että suurin osa nesteestä virtaa siirtimien keskeltä tai lähempää loppupäätä kuin alkupäästä. Teorian mukaan suurin nestemäärä virtaisi siirtimen alkupäästä vähentyen tasaisesti kohti levypakan loppupäätä. Teorian mukaiselle virtausjakaumalle ja lasketuille jakaumille ei löydetty yhteyttä. Tutkimuksessa havaittiin suuria, jopa yli 20 asteen, lämpötilaeroja levyväleistä ulostulevissa virtauksissa. Levyvälien virtauksen käyttäytymisen ja jakautumisen tutkiminen nähdäänkin levypakan pitkittäistä kehittämistä suurempana mielenkiinnon ja kehittämisen kohteena.
Resumo:
In many industrial applications, accurate and fast surface reconstruction is essential for quality control. Variation in surface finishing parameters, such as surface roughness, can reflect defects in a manufacturing process, non-optimal product operational efficiency, and reduced life expectancy of the product. This thesis considers reconstruction and analysis of high-frequency variation, that is roughness, on planar surfaces. Standard roughness measures in industry are calculated from surface topography. A fast and non-contact method to obtain surface topography is to apply photometric stereo in the estimation of surface gradients and to reconstruct the surface by integrating the gradient fields. Alternatively, visual methods, such as statistical measures, fractal dimension and distance transforms, can be used to characterize surface roughness directly from gray-scale images. In this thesis, the accuracy of distance transforms, statistical measures, and fractal dimension are evaluated in the estimation of surface roughness from gray-scale images and topographies. The results are contrasted to standard industry roughness measures. In distance transforms, the key idea is that distance values calculated along a highly varying surface are greater than distances calculated along a smoother surface. Statistical measures and fractal dimension are common surface roughness measures. In the experiments, skewness and variance of brightness distribution, fractal dimension, and distance transforms exhibited strong linear correlations to standard industry roughness measures. One of the key strengths of photometric stereo method is the acquisition of higher frequency variation of surfaces. In this thesis, the reconstruction of planar high-frequency varying surfaces is studied in the presence of imaging noise and blur. Two Wiener filterbased methods are proposed of which one is optimal in the sense of surface power spectral density given the spectral properties of the imaging noise and blur. Experiments show that the proposed methods preserve the inherent high-frequency variation in the reconstructed surfaces, whereas traditional reconstruction methods typically handle incorrect measurements by smoothing, which dampens the high-frequency variation.
Resumo:
In this dissertation, Active Galactic Nuclei (AGN) and their host galaxies are discussed. Together with transitional events, such as supernovae and gamma-ray bursts, AGN are the most energetic phenomena in the Universe. The dominant fraction of their luminosity originates from the center of a galaxy, where accreting gas falls into a supermassive black hole, converting gravitational energy to radiation. AGN have a wide range of observed properties: e.g. in their emission lines, radio emission, and variability. Most likely, these properties depend significantly on their orientation to our line-of-sight, and to unify AGN into physical classes it is crucial to observe their orientation-independent properties, such as the host galaxies. Furthermore, host galaxy studies are essential to understand the formation and co-evolution of galactic bulges and supermassive black holes. In this thesis, the main focus is on observationally characterizing AGN host galaxies using optical and near-infrared imaging and spectroscopy. BL Lac objects are a class of AGN characterized by rapidly variable and polarized continuum emission across the electromagnetic spectrum, and coredominated radio emission. The near-infrared properties of intermediate redshift BL Lac host galaxies are studied in Paper I. They are found to be large elliptical galaxies that are more luminous than their low redshift counterparts suggesting a strong luminosity evolution, and a contribution from a recent star formation episode. To analyze the stellar content of galaxies in more detail multicolor data, especially observations at blue wavelengths, are essential. In Paper III, optical - near-infrared colors and color gradients are derived for low redshift BL Lac host galaxies. They show bluer colors and steeper color gradients than inactive ellipticals which, most likely, are caused by a relatively young stellar population indicating a different evolutionary stage between AGN hosts and inactive ellipticals. In Paper II, near-infrared imaging of intermediate redshift radio-quiet quasar hosts is used to study their luminosity evolution. The hosts are large elliptical galaxies, but they are systematically fainter than the hosts of radio-loud quasars at similar redshifts, suggesting a link between the luminosity of the host galaxies and the radio properties of AGN. In Paper IV, the characteristics of near-infrared stellar absorption features of low redshift radio galaxies are compared with those of inactive early-type galaxies. The comparison suggests that early-type galaxies with AGN are in a different evolutionary stage than their inactive counterparts. Moreover, radio galaxies are found to contain stellar populations containing both old and intermediate age components.
Resumo:
The present work is a part of the large project with purpose to investigate microstructure and electronic structure of natural topazes using NMR method. To reach this task we determined the relative contents of fluorine and hydrogen in crystals blue, colorless, wine and wine irradiated topazes. Then we determined the electric field gradients in site of aluminium atoms by NMR method, calculated EFG using ab initio method, and measured relaxation time dependence on heating temperature for blue, colorless, Swiss blue and sky blue topazes. Nuclear magnetic resonance (NMR) is an effective method to investigate the local structure in the crystal. The NMR study of the single crystal gives detailed information especially about the local crystal structure. As a result of this work we have received practical data, which is possible to use in future for making personal dosimetry and for preparation of mullite, which is widely used in traditional and advanced ceramic materials.
Resumo:
In the paper machine, it is not a desired feature for the boundary layer flows in the fabric and the roll surfaces to travel into the closing nips, creating overpressure. In this thesis, the aerodynamic behavior of the grooved roll and smooth rolls is compared in order to understand the nip flow phenomena, which is the main reason why vacuum and grooved roll constructions are designed. A common method to remove the boundary layer flow from the closing nip is to use the vacuum roll construction. The downside of the use of vacuum rolls is high operational costs due to pressure losses in the vacuum roll shell. The deep grooved roll has the same goal, to create a pressure difference over the paper web and keep the paper attached to the roll or fabric surface in the drying pocket of the paper machine. A literature review revealed that the aerodynamic functionality of the grooved roll is not very well known. In this thesis, the aerodynamic functionality of the grooved roll in interaction with a permeable or impermeable wall is studied by varying the groove properties. Computational fluid dynamics simulations are utilized as the research tool. The simulations have been performed with commercial fluid dynamics software, ANSYS Fluent. Simulation results made with 3- and 2-dimensional fluid dynamics models are compared to laboratory scale measurements. The measurements have been made with a grooved roll simulator designed for the research. The variables in the comparison are the paper or fabric wrap angle, surface velocities, groove geometry and wall permeability. Present-day computational and modeling resources limit grooved roll fluid dynamics simulations in the paper machine scale. Based on the analysis of the aerodynamic functionality of the grooved roll, a grooved roll simulation tool is proposed. The smooth roll simulations show that the closing nip pressure does not depend on the length of boundary layer development. The surface velocity increase affects the pressure distribution in the closing and opening nips. The 3D grooved roll model reveals the aerodynamic functionality of the grooved roll. With the optimal groove size it is possible to avoid closing nip overpressure and keep the web attached to the fabric surface in the area of the wrap angle. The groove flow friction and minor losses play a different role when the wrap angle is changed. The proposed 2D grooved roll simulation tool is able to replicate the grooved aerodynamic behavior with reasonable accuracy. A small wrap angle predicts the pressure distribution correctly with the chosen approach for calculating the groove friction losses. With a large wrap angle, the groove friction loss shows too large pressure gradients, and the way of calculating the air flow friction losses in the groove has to be reconsidered. The aerodynamic functionality of the grooved roll is based on minor and viscous losses in the closing and opening nips as well as in the grooves. The proposed 2D grooved roll model is a simplification in order to reduce computational and modeling efforts. The simulation tool makes it possible to simulate complex paper machine constructions in the paper machine scale. In order to use the grooved roll as a replacement for the vacuum roll, the grooved roll properties have to be considered on the basis of the web handling application.
Resumo:
This work is devoted to the development of numerical method to deal with convection diffusion dominated problem with reaction term, non - stiff chemical reaction and stiff chemical reaction. The technique is based on the unifying Eulerian - Lagrangian schemes (particle transport method) under the framework of operator splitting method. In the computational domain, the particle set is assigned to solve the convection reaction subproblem along the characteristic curves created by convective velocity. At each time step, convection, diffusion and reaction terms are solved separately by assuming that, each phenomenon occurs separately in a sequential fashion. Moreover, adaptivities and projection techniques are used to add particles in the regions of high gradients (steep fronts) and discontinuities and transfer a solution from particle set onto grid point respectively. The numerical results show that, the particle transport method has improved the solutions of CDR problems. Nevertheless, the method is time consumer when compared with other classical technique e.g., method of lines. Apart from this advantage, the particle transport method can be used to simulate problems that involve movingsteep/smooth fronts such as separation of two or more elements in the system.
Resumo:
Työn tarkoituksena oli suunnitella, ohjelmoida ja koekäyttää SMB-laitteisto (Simulated Moving Bed) hydrometallurgisiin erotuksiin. Simuloitu liikkuvapeti saadaan aikaan vaihtamalla sisään- ja ulostuloporttien paikkaa nestevirran suuntaan. Tällöin aikaansaadaan kiintoaineen vastavirtaus minkä johdosta erotustehokkuus kasvaa. Komponenttien retentiotaipumuseroista johtuen komponentit liikkuvat eri nopeuksilla kolonnijärjestelmässä. Enemmän pidättäytyvät komponentit liikkuvat nestevirtaa vastaan ja vähemmän pidättäytyvät komponentit nestevirran mukana. Hydrometallurgiassa vastavirtauksen käyttöä ei ole tieteellisissä julkaisuissa käsitelty laajalti ja saatavilla oleva informaatio onkin kaupallisten yritysten tuottamaa. Hydrometallurgiassa vastavirtausta käyttävissä ioninvaihtolaitteistoissa hyödynnetään irrallisia regenerointivyöhykkeitä. Venttiilijärjestelmän osalta päädyttiin ratkaisuun jossa käytetään yhtä kiertoventtiiliä kullekin virralle, minkä lisäksi kolonnien väleillä käytetään solenoidiventtiiliä. Tämä järjestelmä mahdollistaa yleisimpien SMB-menetelmien käytön mukaan lukien irralliset vyöhykkeet. Laitteiston ohjauksesta vastaa LabVIEW 2010:llä ohjelmoitu ohjelmisto, joka sisältää kaikkien tarvittavien laitteiden ohjausrutiinit. Se mahdollistaa venttiilien synkroniset ja epäsynkroniset vaihdot. Laitteiston puhdistusta varten on ohjelmistoon rakennettu oma rutiini venttiilejä varten. Pumppujen osalta ohjelmisto mahdollistaa vakiovirtauksen sekä lineaaristen ja porrasmuotoisten gradienttien käytön. Ongelmatilanteita varten ohjelmisto valvoo pumppujen ja venttiilien toimintaa ja pysäyttää laitteiston tarvittaessa. Koekäytön avulla pystyttiin todentamaan laitteiston toimivuus.
Resumo:
The environmental impacts of a single mine often remain local, but acidic and metal-rich acid mine drainage (AMD) from the waste materials may pose a serious threat to adjacent surface waters and their ecosystems. Testate amoebae (thecamoebian) analysis was used together with lake sediment geochemistry to study and evaluate the ecological effects of sulphidic metal mines on aquatic environments. Three different mines were included in the study: Luikonlahti Cu-mine in Kaavi, eastern Finland, Haveri Cu-Au mine in Ylöjärvi, southern Finland and Pyhäsalmi Zn-Cu-S mine in Pyhäjärvi, central Finland. Luikonlahti and Haveri are closed mines, but Pyhäsalmi is still operating. The sampling strategy was case specific, and planned to provide a representative sediment sample series to define natural background conditions, to detect spatial and temporal variations in mine impacts, to evaluate the possible recovery after the peak contamination, and to distinguish the effects of other environmental factors from the mining impacts. In the Haveri case, diatom analyses were performed alongside thecamoebian analysis to evaluate the similarities and differences between the two proxies. The results of the analyses were investigated with multivariate methods (direct and indirect ordinations, diversity and distance measure indices). Finally, the results of each case study were harmonized, pooled, and jointly analyzed to summarize the results for this dissertation. Geochemical results showed broadly similar temporal patterns in each case. Concentrations of ions in the pre-disturbance samples defined the natural baseline against which other results were compared. The beginning of the mining activities had only minor impacts on sediment geochemistry, mainly appearing as an increased clastic input into the lakes at Haveri and Pyhäsalmi. The active mining phase was followed by the metallic contamination and, subsequently, by the most recent change towards decreased but still elevated metal concentrations in the sediments. Because of the delay in the oxidation of waste material and formation of AMD, the most intense, but transient metal contamination phase occurred in the post-mining period at Luikonlahti and Haveri. At Pyhäsalmi, the highest metal contamination preceded effluent mitigation actions. Spatial gradients were observed besides the temporal evolution in both the pre-disturbance and mine-impacted samples from Luikonlahti and Pyhäsalmi. The geochemical gradients varied with distance from the main source of contaminants (dispersion and dilution) and with water depth (redox and pH). The spatial extent of the highest metal contamination associated with these mines remained rather limited. At Haveri, the metallic impact was widespread, with the upstream site in another lake basin found to be contaminated. Changes in thecamoebian assemblages corresponded well with the geochemical results. Despite some differences, the general features and ecological responses of the faunal assemblages were rather similar in each lake. Constantly abundant strains of Difflugia oblonga, Difflugia protaeiformis and centropyxids formed the core of these assemblages. Increasing proportions of Cucurbitella tricuspis towards the surface samples were found in all of the cases. The results affirmed the indicator value of some already known indicator forms, but such as C. tricuspis and higher nutrient levels, but also elicited possible new ones such as D. oblonga ‘spinosa’ and clayey substrate, high conductivity and/or alkalinity, D. protaeiformis ‘multicornis’ and pH, water hardness and the amount of clastic material and Centropyxis constricta ‘aerophila’ and high metal and S concentrations. In each case, eutrophication appeared to be the most important environmental factor, masking the effects of other variables. Faunal responses to high metal inputs in sediments remained minor, but were nevertheless detectable. Besides the trophic state of the lake, numerical methods suggested overall geochemical conditions (pH, redox) to be the most important factor at Luikonlahti, whereas the Haveri results showed the clearest connection between metals and amoebae. At Pyhäsalmi, the strongest relationships were found between Ca- and S-rich present loading, redox conditions and substrate composition. Sediment geochemistry and testate amoeba analysis proved to be a suitable combination of methods to detect and describe the aquatic mine impacts in each specific case, to evaluate recovery and to differentiate between the effects of different anthropogenic and natural environmental factors. It was also suggested that aquatic mine impacts can be significantly mitigated by careful design and after-care of the waste facilities, especially by reducing and preventing AMD. The case-specific approach is nevertheless necessary because of the unique characteristics of each mine and variations in the environmental background conditions.