27 resultados para ensemble statistics
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Web-portaalien aiheenmukaista luokittelua voidaan hyödyntää tunnistamaan käyttäjän kiinnostuksen kohteet keräämällä tilastotietoa hänen selaustottumuksistaan eri kategorioissa. Tämä diplomityö käsittelee web-sovelluksien osa-alueita, joissa kerättyä tilastotietoa voidaan hyödyntää personalisoinnissa. Yleisperiaatteet sisällön personalisoinnista, Internet-mainostamisesta ja tiedonhausta selitetään matemaattisia malleja käyttäen. Lisäksi työssä kuvaillaan yleisluontoiset ominaisuudet web-portaaleista sekä tilastotiedon keräämiseen liittyvät seikat.
Resumo:
The Extended Kalman Filter (EKF) and four dimensional assimilation variational method (4D-VAR) are both advanced data assimilation methods. The EKF is impractical in large scale problems and 4D-VAR needs much effort in building the adjoint model. In this work we have formulated a data assimilation method that will tackle the above difficulties. The method will be later called the Variational Ensemble Kalman Filter (VEnKF). The method has been tested with the Lorenz95 model. Data has been simulated from the solution of the Lorenz95 equation with normally distributed noise. Two experiments have been conducted, first with full observations and the other one with partial observations. In each experiment we assimilate data with three-hour and six-hour time windows. Different ensemble sizes have been tested to examine the method. There is no strong difference between the results shown by the two time windows in either experiment. Experiment I gave similar results for all ensemble sizes tested while in experiment II, higher ensembles produce better results. In experiment I, a small ensemble size was enough to produce nice results while in experiment II the size had to be larger. Computational speed is not as good as we would want. The use of the Limited memory BFGS method instead of the current BFGS method might improve this. The method has proven succesful. Even if, it is unable to match the quality of analyses of EKF, it attains significant skill in forecasts ensuing from the analysis it has produced. It has two advantages over EKF; VEnKF does not require an adjoint model and it can be easily parallelized.
Resumo:
For decades researchers have been trying to build models that would help understand price performance in financial markets and, therefore, to be able to forecast future prices. However, any econometric approaches have notoriously failed in predicting extreme events in markets. At the end of 20th century, market specialists started to admit that the reasons for economy meltdowns may originate as much in rational actions of traders as in human psychology. The latter forces have been described as trading biases, also known as animal spirits. This study aims at expressing in mathematical form some of the basic trading biases as well as the idea of market momentum and, therefore, reconstructing the dynamics of prices in financial markets. It is proposed through a novel family of models originating in population and fluid dynamics, applied to an electricity spot price time series. The main goal of this work is to investigate via numerical solutions how well theequations succeed in reproducing the real market time series properties, especially those that seemingly contradict standard assumptions of neoclassical economic theory, in particular the Efficient Market Hypothesis. The results show that the proposed model is able to generate price realizations that closely reproduce the behaviour and statistics of the original electricity spot price. That is achieved in all price levels, from small and medium-range variations to price spikes. The latter were generated from price dynamics and market momentum, without superimposing jump processes in the model. In the light of the presented results, it seems that the latest assumptions about human psychology and market momentum ruling market dynamics may be true. Therefore, other commodity markets should be analyzed with this model as well.
Resumo:
This dissertation examines knowledge and industrial knowledge creation processes. It looks at the way knowledge is created in industrial processes based on data, which is transformed into information and finally into knowledge. In the context of this dissertation the main tool for industrial knowledge creation are different statistical methods. This dissertation strives to define industrial statistics. This is done using an expert opinion survey, which was sent to a number of industrial statisticians. The survey was conducted to create a definition for this field of applied statistics and to demonstrate the wide applicability of statistical methods to industrial problems. In this part of the dissertation, traditional methods of industrial statistics are introduced. As industrial statistics are the main tool for knowledge creation, the basics of statistical decision making and statistical modeling are also included. The widely known Data Information Knowledge Wisdom (DIKW) hierarchy serves as a theoretical background for this dissertation. The way that data is transformed into information, information into knowledge and knowledge finally into wisdom is used as a theoretical frame of reference. Some scholars have, however, criticized the DIKW model. Based on these different perceptions of the knowledge creation process, a new knowledge creation process, based on statistical methods is proposed. In the context of this dissertation, the data is a source of knowledge in industrial processes. Because of this, the mathematical categorization of data into continuous and discrete types is explained. Different methods for gathering data from processes are clarified as well. There are two methods for data gathering in this dissertation: survey methods and measurements. The enclosed publications provide an example of the wide applicability of statistical methods in industry. In these publications data is gathered using surveys and measurements. Enclosed publications have been chosen so that in each publication, different statistical methods are employed in analyzing of data. There are some similarities between the analysis methods used in the publications, but mainly different methods are used. Based on this dissertation the use of statistical methods for industrial knowledge creation is strongly recommended. With statistical methods it is possible to handle large datasets and different types of statistical analysis results can easily be transformed into knowledge.
Resumo:
Soitinnus: trumpetti, orkesteri.
Resumo:
The current thesis manuscript studies the suitability of a recent data assimilation method, the Variational Ensemble Kalman Filter (VEnKF), to real-life fluid dynamic problems in hydrology. VEnKF combines a variational formulation of the data assimilation problem based on minimizing an energy functional with an Ensemble Kalman filter approximation to the Hessian matrix that also serves as an approximation to the inverse of the error covariance matrix. One of the significant features of VEnKF is the very frequent re-sampling of the ensemble: resampling is done at every observation step. This unusual feature is further exacerbated by observation interpolation that is seen beneficial for numerical stability. In this case the ensemble is resampled every time step of the numerical model. VEnKF is implemented in several configurations to data from a real laboratory-scale dam break problem modelled with the shallow water equations. It is also tried in a two-layer Quasi- Geostrophic atmospheric flow problem. In both cases VEnKF proves to be an efficient and accurate data assimilation method that renders the analysis more realistic than the numerical model alone. It also proves to be robust against filter instability by its adaptive nature.