14 resultados para electro-optic modulation

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nimiösivua ei nähty. Nimeke HYK:on luettelon mukaan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Painovuosi nimekkeestä.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Painovuosi nimekkeestä.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multilevel converters provide an attractive solution to bring the benefits of speed-controlled rotational movement to high-power applications. Therefore, multilevel inverters have attracted wide interest in both the academic community and in the industry for the past two decades. In this doctoral thesis, modulation methods suitable especially for series connected H-bridge multilevel inverters are discussed. A concept of duty cycle modulation is presented and its modification is proposed. These methods are compared with other well-known modulation schemes, such as space-vector pulse width modulation and carrier-based modulation schemes. The advantage of the modified duty-cycle modulation is its algorithmic simplicity. A similar mathematical formulation for the original duty cycle modulation is proposed. The modified duty cycle modulation is shown to produce well-formed phase-to-neutral voltages that have lower total harmonic distortion than the space-vector pulse width modulation and the duty cycle modulation. The space-vector-based solution and the duty cycle modulation, on the other hand, result in a better-quality line-to-line voltage and current waveform. The voltage of the DC links in the modules of the series-connected H-bridge inverter are shown to fluctuate while they are under load. The fluctuation causes inaccuracies in the voltage production, which may result in a failure of the flux estimator in the controller. An extension for upper-level modulation schemes, which changes the switching instants of the inverter so that the output voltage meets the reference voltage accurately regardless of the DC link voltages, is proposed. The method is shown to reduce the error to a very low level when a sufficient switching frequency is used. An appropriate way to organize the switching instants of the multilevel inverter is to make only one-level steps at a time. This causes restrictions on the dynamical features of the modulation schemes. The produced voltage vector cannot be rotated several tens of degrees in a single switching period without violating the above-mentioned one-level-step rule. The dynamical capabilities of multilevel inverters are analyzed in this doctoral thesis, and it is shown that the multilevel inverters are capable of operating even in dynamically demanding metal industry applications. In addition to the discussion on modulation schemes, an overvoltage in multilevel converter drives caused by cable reflection is addressed. The voltage reflection phenomenon in drives with long feeder cables causes premature insulation deterioration and also affects the commonmode voltage, which is one of the main reasons for bearing currents. Bearing currents, on the other hand, cause fluting in the bearings, which results in premature bearing failure. The reflection phenomenon is traditionally prevented by filtering, but in this thesis, a modulationbased filterless method to mitigate the overvoltage in multilevel drives is proposed. Moreover, the mitigation method can be implemented as an extension for upper-level modulation schemes. The method exploits the oscillations caused by two consecutive voltage edges so that the sum of the oscillations results in a mitigated peak of the overvoltage. The applicability of the method is verified by simulations together with experiments with a full-scale prototype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to investigate herpes simplex virus type 1 (HSV-1)- and measles virus (MV)-induced cell death. HSV-1 with deletion in genes encoding infected cell protein (ICP)4 and protein kinase Us3 (d120) induced apoptosis and cathepsin activation in epithelial (HEp-2) and monocytic (U937) cells. Inhibition of cathepsin activity decreased the amount of d120-induced apoptosis indicating that d120-induced apoptosis could be cathepsin-mediated. Also, HSV-1 infection increased caspase activation suggesting that d120-induced apoptosis is probably caspase-mediated. Cystatin treatment decreased the activity of cathepsins and the replication of HSV-1 indicating that cathepsins contribute to HSV-1 infection. Interestingly, d120 induced also necroptosis in monocytic cells. This is the first report on necroptosis in HSV-1- infected cells. MV induced apoptosis in uninfected bystander T lymphocytes, probably via interaction of MV-infected monocytes with uninfected lymphocytes. The expression of death receptor Fas was clearly increased on the surface of lymphocytes. The number of apoptotic cells and the activation of cathepsins and caspases were increased in MVinfected U937 cells suggesting that MV-induced apoptosis could be cathepsin- and caspase-mediated. Cystatin treatment inhibited cathepsin activities but not MV-induced apoptosis. Besides HSV-1-induced apoptosis, innate immune responses were studied in HSV-1-infection. HSV-1 viruses with either ICP4 and Us3, or Us3 deletion only, increased the expression of Toll-like receptor (TLR)3 and stimulated its downstream pathways leading to increased expression of type I interferon gene and to functional interferons. These findings suggest that besides controlling apoptosis, HSV-1 ICP4 and Us3 genes are involved in the control of TLR3 response in infected cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor’s electromagnetic state and load. The load angle can be limited indirectly by limiting the torque reference. This method is however parameter sensitive and requires a safety margin between the theoretical torque maximum and the actual torque limit. The DTC modulation principle allows however a direct load angle adjustment without any current control. In this work a direct load angle control method has been developed. The method keeps the drive stabile and allows the maximal utilisation of the drive without a safety margin in the torque limitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Original sludge from wastewater treatment plants (WWTPs) usually has a poor dewaterability. Conventionally, mechanical dewatering methods are used to increase the dry solids (DS) content of the sludge. However, sludge dewatering is an important economic factor in the operation of WWTPs, high water content in the final sludge cake is commonly related to an increase in transport and disposal costs. Electro‐dewatering could be a potential technique to reduce the water content of the final sludge cake, but the parameters affecting the performance of electro‐dewatering and the quality of the resulting sludge cake, as well as removed water, are not sufficiently well known. In this research, non‐pressure and pressure‐driven experiments were set up to investigate the effect of various parameters and experimental strategies on electro‐dewatering. Migration behaviour of organic compounds and metals was also studied. Application of electrical field significantly improved the dewatering performance in comparison to experiments without electric field. Electro‐dewatering increased the DS content of the sludge from 15% to 40 % in non‐pressure applications and from 8% to 41% in pressure‐driven applications. DS contents were significantly higher than typically obtained with mechanical dewatering techniques in wastewater treatment plant. The better performance of the pressure‐driven dewatering was associated to a higher current density at the beginning and higher electric field strength later on in the experiments. The applied voltage was one of the major parameters affecting dewatering time, water removal rate and DS content of the sludge cake. By decreasing the sludge loading rate, higher electrical field strength was established between the electrodes, which has a positive effect on an increase in DS content of the final sludge cake. However interrupted voltage application had anegative impact on dewatering in this study, probably because the off‐times were too long. Other factors affecting dewatering performance were associated to the original sludge characteristics and sludge conditioning. Anaerobic digestion of the sludge with high pH buffering capacity, polymer addition and freeze/thaw conditioning had a positive impact on dewatering. The impact of pH on electro‐dewatering was related to the surface charge of the particles measured as zeta‐potential. One of the differences between electro‐dewatering and mechanical dewatering technologies is that electro‐dewatering actively removes ionic compounds from the sludge. In this study, dissolution and migration of organic compounds (such as shortchain fatty acids), macro metals (Na, K, Ca, Mg, Fe) and trace metals (Ni, Mn, Zn, Cr) was investigated. The migration of the metals depended on the fractionation and electrical field strength. These compounds may have both negative and positive impacts on the reuse and recycling of the sludge and removed water. Based on the experimental results of this study, electro‐dewatering process can be optimized in terms of dewatering time, desired DS content, power consumption and chemical usage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this master’s thesis is to investigate the loss behavior of three-level ANPC inverter and compare it with conventional NPC inverter. The both inverters are controlled with mature space vector modulation strategy. In order to provide the comparison both accurate and detailed enough NPC and ANPC simulation models should be obtained. The similar control model of SVM is utilized for both NPC and ANPC inverter models. The principles of control algorithms, the structure and description of models are clarified. The power loss calculation model is based on practical calculation approaches with certain assumptions. The comparison between NPC and ANPC topologies is presented based on results obtained for each semiconductor device, their switching and conduction losses and efficiency of the inverters. Alternative switching states of ANPC topology allow distributing losses among the switches more evenly, than in NPC inverter. Obviously, the losses of a switching device depend on its position in the topology. Losses distribution among the components in ANPC topology allows reducing the stress on certain switches, thus losses are equally distributed among the semiconductors, however the efficiency of the inverters is the same. As a new contribution to earlier studies, the obtained models of SVM control, NPC and ANPC inverters have been built. Thus, this thesis can be used in further more complicated modelling of full-power converters for modern multi-megawatt wind energy conversion systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interest in water treatment by electrochemical methods has grown in recent years. Electrochemical oxidation has been applied particularly successfully to degrade different organic pollutants and disinfect drinking water. This study summarizes the effectiveness of the electrochemical oxidation technique in inactivating different primary biofilm forming paper mill bacteria as well as sulphide and organic material in pulp and paper mill wastewater in laboratory scale batch experiments. Three different electrodes, borondoped diamond (BDD), mixed metal oxide (MMO) and PbO2, were employed as anodes. The impact on inactivation efficiency of parameters such as current density and initial pH or chloride concentration of synthetic paper machine water was studied. The electrochemical behaviour of the electrodes was investigated by cyclic voltammetry with MMO, BDD and PbO2 electrodes in synthetic paper mill water as also with MMO and stainless steel electrodes with biocides. Some suggestions on the formation of different oxidants and oxidation mechanisms were also presented during the treatment. Aerobic paper mill bacteria species (Deinococcus geothermalis, Pseudoxanthomonas taiwanensis and Meiothermus silvanus) were inactivated effectively (>2 log) at MMO electrodes by current density of 50 mA/cm2 and the time taken three minutes. Increasing current density and initial chloride concentration of paper mill water increased the inactivation rate of Deinococcus geothermalis. The inactivation order of different bacteria species was Meiothermus silvanus > Pseudoxanthomonas taiwanensis > Deinococcus geothermalis. It was observed that inactivation was mainly due to the electrochemically generated chlorine/hypochlorite from chloride present in the water and also residual disinfection by chlorine/hypochlorite occurred. In real paper mill effluent treatment sulphide oxidation was effective with all the different initial concentrations (almost 100% reduction, current density 42.9 mA/cm2) and also anaerobic bacteria inactivation was observed (almost 90% reduction by chloride concentration of 164 mg/L and current density of 42.9 mA/cm2 in five minutes). Organic material removal was not as effective when comparing with other tested techniques, probably due to the relatively low treatment times. Cyclic voltammograms in synthetic paper mill water with stainless steel electrode showed that H2O2 could be degraded to radicals during the cathodic runs. This emphasises strong potential of combined electrochemical treatment with this biocide in bacteria inactivation in paper mill environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scanning optics create different types of phenomena and limitation to cladding process compared to cladding with static optics. This work concentrates on identifying and explaining the special features of laser cladding with scanning optics. Scanner optics changes cladding process energy input mechanics. Laser energy is introduced into the process through a relatively small laser spot which moves rapidly back and forth, distributing the energy to a relatively large area. The moving laser spot was noticed to cause dynamic movement in the melt pool. Due to different energy input mechanism scanner optic can make cladding process unstable if parameter selection is not done carefully. Especially laser beam intensity and scanning frequency have significant role in the process stability. The laser beam scanning frequency determines how long the laser beam affects with specific place local specific energy input. It was determined that if the scanning frequency in too low, under 40 Hz, scanned beam can start to vaporize material. The intensity in turn determines on how large package this energy is brought and if the intensity of the laser beam was too high, over 191 kW/cm2, laser beam started to vaporize material. If there was vapor formation noticed in the melt pool, the process starts to resample more laser alloying due to deep penetration of laser beam in to the substrate. Scanner optics enables more flexibility to the process than static optics. The numerical adjustment of scanning amplitude enables clad bead width adjustment. In turn scanner power modulation (where laser power is adjusted according to where the scanner is pointing) enables modification of clad bead cross-section geometry when laser power can be adjusted locally and thus affect how much laser beam melts material in each sector. Power modulation is also an important factor in terms of process stability. When a linear scanner is used, oscillating the scanning mirror causes a dwell time in scanning amplitude border area, where the scanning mirror changes the direction of movement. This can cause excessive energy input to this area which in turn can cause vaporization and process instability. This process instability can be avoided by decreasing energy in this region by power modulation. Powder feeding parameters have a significant role in terms of process stability. It was determined that with certain powder feeding parameter combinations powder cloud behavior became unstable, due to the vaporizing powder material in powder cloud. Mainly this was noticed, when either or both the scanning frequency or powder feeding gas flow was low or steep powder feeding angle was used. When powder material vaporization occurred, it created vapor flow, which prevented powder material to reach the melt pool and thus dilution increased. Also powder material vaporization was noticed to produce emission of light at wavelength range of visible light. This emission intensity was noticed to be correlated with the amount of vaporization in the powder cloud.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactive arthritis (ReA) is an inflammatory joint disease, which belongs to the group of Spondyloarthritis (SpA). It may occur after infections with certain gram-negative bacteria such as Salmonella and Yersinia. SpAs are strongly associated with the human leucocyte antigen (HLA)-B27. Despite active research, the mechanism by which HLA-B27 causes disease susceptibility is still unknown. However, HLA-B27 has a tendency to misfold during assembly. It is possible that the misfolding of HLA-B27 could alter signaling pathways and/or molecules involved in inflammatory response in cells. We have earlier discovered that in HLA-B27-positive cells the interaction between the host and causative bacteria is disturbed. Our recent studies indicate that the expression of HLA-B27 may alter certain signaling molecules by disturbing their activation. The aim of this study was to investigate whether the expression of HLA-B27 disturbs the signaling molecules, especially the phosphorylation of transcription factor STAT1. STAT1 is an important mediator of inflammatory responses. Our results show that the phosphorylation of the STAT1 is significantly altered in HLA-B27-expressing U937 monocytic cells compared with control cells. STAT1 tyrosine 701 is more strongly phosphorylated in HLAB27- expressing cells; whereas the phosphorylation of STAT1 serine 727 is prolonged. Phosphorylation of STAT1 was discovered to be dependent on protein kinase PKR. Furthermore, we found out that the expression of posttranscriptional gene regulator HuR was altered in HLA-B27-expressing cells. We also detected that HLA-B27-positive cells secrete more interleukin 6, which is an important mediator of inflammation. These results help to understand how HLA-B27 may confer susceptibility to SpAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A tumor is a fast-growing malignant tissue. This creates areas inside the tumor that are distant from local blood vessels to be able to get enough oxygen. This hypoxic condition activates a transcription factor called hypoxia inducible factor (HIF). HIF responses help a cell to adapt to decreased oxygen by activating glycolytic and angiogenesis pathways and by regulating apoptotic responses. Hypoxia drives the upregulation of a growth factor called transforming growth factor beta (TGF-beta). Similar to a hypoxia response, TGF is an important regulator of cell fate. TGF-β and HIF pathways regulate partially overlapping target genes. This regulation can also be cooperative. The TGF-beta signal is initiated by activation of plasma membrane receptors that then activate effector proteins called small mothers against decapentaplegic (Smad) homologs. In healthy tissue, TGF-β keeps cell proliferation and growth under control. During cancer progression, TGF-beta has shown a dual role, whereby it inhibits initial tumor formation but, conversely, in an existent tumor, TGF-beta drives malignant progression. Along with HIF and TGF-beta also protein dephosphorylation is an important regulatory mechanism of cell fate. Protein dephosphorylation is catalyzed by protein phosphatases such as Protein phosphatase 2A (PP2A). PP2A is a ubiquitous phosphatase that can exist in various active forms. PP2A can specifically regulate TGF-beta signaling either by enhancing or inhibiting the receptor activity. This work demonstrates that during hypoxia, PP2A is able to fine-tune TGF-beta signal by specifically targeting Smad3 effector in a Smad7-dependent manner. Inactivation of Smad3 in hypoxia leads to malignant conversion of TGF-beta signaling.