3 resultados para egg production traits

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increased emissions of greenhouse gases into the atmosphere are causing an anthropogenic climate change. The resulting global warming challenges the ability of organisms to adapt to the new temperature conditions. However, warming is not the only major threat. In marine environments, dissolution of carbon dioxide from the atmosphere causes a decrease in surface water pH, the so called ocean acidification. The temperature and acidification effects can interact, and create even larger problems for the marine flora and fauna than either of the effects would cause alone. I have used Baltic calanoid copepods (crustacean zooplankton) as my research object and studied their growth and stress responses using climate predictions projected for the next century. I have studied both direct temperature and pH effects on copepods, and indirect effects via their food: the changing phytoplankton spring bloom composition and toxic cyanobacterium. The main aims of my thesis were: 1) to find out how warming and acidification combined with a toxic cyanobacterium affect copepod reproductive success (egg production, egg viability, egg hatching success, offspring development) and oxidative balance (antioxidant capacity, oxidative damage), and 2) to reveal the possible food quality effects of spring phytoplankton bloom composition dominated by diatoms or dinoflagellates on reproducing copepods (egg production, egg hatching, RNA:DNA ratio). The two copepod genera used, Acartia sp. and Eurytemora affinis are the dominating mesozooplankton taxa (0.2 – 2 mm) in my study area the Gulf of Finland. The 20°C temperature seems to be within the tolerance limits of Acartia spp., because copepods can adapt to the temperature phenotypically by adjusting their body size. Copepods are also able to tolerate a pH decrease of 0.4 from present values, but the combination of warm water and decreased pH causes problems for them. In my studies, the copepod oxidative balance was negatively influenced by the interaction of these two environmental factors, and egg and nauplii production were lower at 20°C and lower pH, than at 20°C and ambient pH. However, presence of toxic cyanobacterium Nodularia spumigena improved the copepod oxidative balance and helped to resist the environmental stress, in question. In addition, adaptive maternal effects seem to be an important adaptation mechanism in a changing environment, but it depends on the condition of the female copepod and her diet how much she can invest in her offspring. I did not find systematic food quality difference between diatoms and dinoflagellates. There are both good and bad diatom and dinoflagellate species. Instead, the dominating species in the phytoplankton bloom composition has a central role in determining the food quality, although copepods aim at obtaining as a balanced diet as possible by foraging on several species. If the dominating species is of poor quality it can cause stress when ingested, or lead to non-optimal foraging if rejected. My thesis demonstrates that climate change induced water temperature and pH changes can cause problems to Baltic Sea copepod communities. However, their resilience depends substantially on their diet, and therefore the response of phytoplankton to the environmental changes. As copepods are an important link in pelagic food webs, their future success can have far reaching consequences, for example on fish stocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hen eggs and oats (Avena Sativa) are important materials for the food industry. Today, instead of merely satisfying the feeling of hunger, consumers are asking for healthier, biologically active and environmentally friendly products. The growing awareness of consumers’ increasing demands presents a great challenge to the food industry to develop more sustainable products and utilise modern and effective techniques. The modification of yolk fatty acid composition by means of feed supplements is well understood. Egg yolk phospholipids are polar lipids and are used in several applications including food, cosmetics, pharmaceuticals, and special nutrients. Egg yolk phospholipids are excellent emulsifiers, typically sold as mixtures of phospholipids, triacylglycerols, and cholesterol. However, highly purified and characterised phospholipids are needed in several sophisticated applications. Industrial fractionation of phospholipids is usually based on organic solvents. With these fractionation techniques, some harmful residues of organic solvents may cause problems in further processing. The objective of the present study was to investigate the methods to improve the functional properties of eggs, to develop techniques to isolate the fractions responsible for the specific functional properties of egg yolk lipids, and to apply the developed techniques to plant-based materials, too. Fractionation techniques based on supercritical fluids were utilised for the separation of the lipid fractions of eggs and oats. The chemical and functional characterisation of the fractions were performed, and the produced oat polar lipid fractions were tested as protective barrier in encapsulation processes. Modifying the fatty acid compositions of egg yolks with different types of oil supplements in feed had no affect on their functional or sensory properties. Based on the results of functional and sensory analysis, it is evident that eggs with modified fatty acid compositions are usable in several industrial applications. These applications include liquid egg yolk products used in mayonnaise and salad dressings. Egg yolk powders were utilised in different kinds of fractionation processes. The precipitation method developed in this study resembles the supercritical anti-solvent method, which is typically used in the pharmaceutical industry. With pilot scale supercritical fluid processes, non-polar lipids and polar lipids were successfully separated from commercially produced egg yolk powder and oat flakes. The egg and oat-based polar lipid fractions showed high purities, and the corresponding delipidated fractions produced using supercritical techniques offer interesting starting materials for the further production of bioactive compounds. The oat polar lipid fraction contained especially digalactosyadiacylglycerol, which was shown to have valuable functional properties in the encapsulation of probiotics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid changes in biodiversity are occurring globally, as a consequence of anthropogenic disturbance. This has raised concerns, since biodiversity is known to significantly contribute to ecosystem functions and services. Marine benthic communities participate in numerous functions provided by soft-sedimentary ecosystems. Eutrophication-induced oxygen deficiency is a growing threat against infaunal communities, both in open sea areas and in coastal zones. There is thus a need to understand how such disturbance affects benthic communities, and what is lost in terms of ecosystem functioning if benthic communities are harmed. In this thesis, the status of benthic biodiversity was assessed for the open Baltic Sea, a system severely affected by broad-scale hypoxia. Long-term monitoring data made it possible to establish quantitative biodiversity baselines against which change could be compared. The findings show that benthic biodiversity is currently severely impaired in large areas of the open Baltic Sea, from the Bornholm Basin to the Gulf of Finland. The observed reduction in biodiversity indicates that benthic communities are structurally and functionally impoverished in several of the sub-basins due to the hypoxic stress. A more detailed examination of disturbance impacts (through field studies and -experiments) on benthic communities in coastal areas showed that changes in benthic community structure and function took place well before species were lost from the system. The degradation of benthic community structure and function was directed by the type of disturbance, and its specific temporal and spatial characteristics. The observed shifts in benthic trait composition were primarily the result of reductions in species’ abundances, or of changes in demographic characteristics, such as the loss of large, adult bivalves. Reduction in community functions was expressed as declines in the benthic bioturbation potential and in secondary biomass production. The benthic communities and their degradation accounted for a substantial proportion of the changes observed in ecosystem multifunctionality. Individual ecosystem functions (i.e. measures of sediment ecosystem metabolism, elemental cycling, biomass production, organic matter transformation and physical structuring) were observed to differ in their response to increasing hypoxic disturbance. Interestingly, the results suggested that an impairment of ecosystem functioning could be detected at an earlier stage if multiple functions were considered. Importantly, the findings indicate that even small-scale hypoxic disturbance can reduce the buffering capacity of sedimentary ecosystem, and increase the susceptibility of the system towards further stress. Although the results of the individual papers are context-dependent, their combined outcome implies that healthy benthic communities are important for sustaining overall ecosystem functioning as well as ecosystem resilience in the Baltic Sea.