49 resultados para dynamic exercise
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Bone strain plays a major role as the activation signal for the bone (re)modeling process, which is vital for keeping bones healthy. Maintaining high bone mineral density reduces the chances of fracture in the event of an accident. Numerous studies have shown that bones can be strengthened with physical exercise. Several hypotheses have asserted that a stronger osteogenic (bone producing) effect results from dynamic exercise than from static exercise. These previous studies are based on short-term empirical research, which provide the motivation for justifying the experimental results with a solid mathematical background. The computer simulation techniques utilized in this work allow for non-invasive bone strain estimation during physical activity at any bone site within the human skeleton. All models presented in the study are threedimensional and actuated by muscle models to replicate the real conditions accurately. The objective of this work is to determine and present loading-induced bone strain values resulting from physical activity. It includes a comparison of strain resulting from four different gym exercises (knee flexion, knee extension, leg press, and squat) and walking, with the results reported for walking and jogging obtained from in-vivo measurements described in the literature. The objective is realized primarily by carrying out flexible multibody dynamics computer simulations. The dissertation combines the knowledge of finite element analysis and multibody simulations with experimental data and information available from medical field literature. Measured subject-specific motion data was coupled with forward dynamics simulation to provide natural skeletal movement. Bone geometries were defined using a reverse engineering approach based on medical imaging techniques. Both computed tomography and magnetic resonance imaging were utilized to explore modeling differences. The predicted tibia bone strains during walking show good agreement with invivo studies found in the literature. Strain measurements were not available for gym exercises; therefore, the strain results could not be validated. However, the values seem reasonable when compared to available walking and running invivo strain measurements. The results can be used for exercise equipment design aimed at strengthening the bones as well as the muscles during workout. Clinical applications in post fracture recovery exercising programs could also be the target. In addition, the methodology introduced in this study, can be applied to investigate the effect of weightlessness on astronauts, who often suffer bone loss after long time spent in the outer space.
Resumo:
The human motion study, which relies on mathematical and computational models ingeneral, and multibody dynamic biomechanical models in particular, has become asubject of many recent researches. The human body model can be applied to different physical exercises and many important results such as muscle forces, which are difficult to be measured through practical experiments, can be obtained easily. In the work, human skeletal lower limb model consisting of three bodies in build using the flexible multibody dynamics simulation approach. The floating frame of reference formulation is used to account for the flexibility in the bones of the human lower limb model. The main reason of considering the flexibility inthe human bones is to measure the strains in the bone result from different physical exercises. It has been perceived the bone under strain will become stronger in order to cope with the exercise. On the other hand, the bone strength is considered and important factors in reducing the bone fractures. The simulation approach and model developed in this work are used to measure the bone strain results from applying raising the sole of the foot exercise. The simulation results are compared to the results available in literature. The comparison shows goof agreement. This study sheds the light on the importance of using the flexible multibody dynamic simulation approach to build human biomechanical models, which can be used in developing some exercises to achieve the optimalbone strength.
Resumo:
The objective of this study is to show that bone strains due to dynamic mechanical loading during physical activity can be analysed using the flexible multibody simulation approach. Strains within the bone tissue play a major role in bone (re)modeling. Based on previous studies, it has been shown that dynamic loading seems to be more important for bone (re)modeling than static loading. The finite element method has been used previously to assess bone strains. However, the finite element method may be limited to static analysis of bone strains due to the expensive computation required for dynamic analysis, especially for a biomechanical system consisting of several bodies. Further, in vivo implementation of strain gauges on the surfaces of bone has been used previously in order to quantify the mechanical loading environment of the skeleton. However, in vivo strain measurement requires invasive methodology, which is challenging and limited to certain regions of superficial bones only, such as the anterior surface of the tibia. In this study, an alternative numerical approach to analyzing in vivo strains, based on the flexible multibody simulation approach, is proposed. In order to investigate the reliability of the proposed approach, three 3-dimensional musculoskeletal models where the right tibia is assumed to be flexible, are used as demonstration examples. The models are employed in a forward dynamics simulation in order to predict the tibial strains during walking on a level exercise. The flexible tibial model is developed using the actual geometry of the subject’s tibia, which is obtained from 3 dimensional reconstruction of Magnetic Resonance Images. Inverse dynamics simulation based on motion capture data obtained from walking at a constant velocity is used to calculate the desired contraction trajectory for each muscle. In the forward dynamics simulation, a proportional derivative servo controller is used to calculate each muscle force required to reproduce the motion, based on the desired muscle contraction trajectory obtained from the inverse dynamics simulation. Experimental measurements are used to verify the models and check the accuracy of the models in replicating the realistic mechanical loading environment measured from the walking test. The predicted strain results by the models show consistency with literature-based in vivo strain measurements. In conclusion, the non-invasive flexible multibody simulation approach may be used as a surrogate for experimental bone strain measurement, and thus be of use in detailed strain estimation of bones in different applications. Consequently, the information obtained from the present approach might be useful in clinical applications, including optimizing implant design and devising exercises to prevent bone fragility, accelerate fracture healing and reduce osteoporotic bone loss.
Resumo:
Summary
Resumo:
[Abstract]
Resumo:
J Appl Physiol vol 100, no 2, pp 507-511, 2006
T-wave alternans predicts mortality in a population undergoing a clinically indicated exercise test.
Resumo:
Eur Heart J. 2007 Oct;28(19):2332-7. Epub 2007 Jul 25.
Resumo:
Physiol Meas. 2007 Oct;28(10):1189-200. Epub 2007 Sep 18.
Resumo:
Scand J Clin Lab Invest. 2007 Aug 1;:1-11 [Epub ahead of print]
Resumo:
Diplomityössä tutkitaan keinoja brändätä ja varioida S60-ohjelmistoja dynaamisesti ja ajonaikaisesti. S60 on kehitysalusta, jota käyttävät useat puhelinvalmistajat ja heidän puhelimiaan käyttävät lukuisat eri operaattorit. Operaattorit haluavat puhelimiensa tai osan puhelimen sovelluksista erottuvan kilpailijoista heidän omalla brändillään ja tämän takia täytyy olla keinot joko koko puhelimen, tai valittujen sovellusten brändäykselle. Osa sovelluksista saatetaan haluta vaihtavan käytettyä brändiä sen käyttämien resurssien, kuten verkkopalvelimen, mukaan. Variointidataa tulee myös pystyä jakamaan eri sovellusten tai sovellusten osien kesken. Työssä esitellään Symbian käyttöjärjestelmä ja S60 kehitysympäristö, sekä pohditaan Symbianin turvallisuuskäytäntöjen tuomia haasteita variointidatan jakamiseen eri sovellusten välillä. Olemassaolevia variointitapoja tutkitaan työn mahdolliseksi pohjaksi. Työ sisältää esittelyn projektista, jossa kehitettiin erään S60 sovelluksen dynaaminen brändäystoteutus, joka myös mahdollistaa variointidatan jakamisen eri sovellusten kanssa.
Resumo:
Laboratoriomittakaavainen formeri on välttämätön, jotta paperinvalmistusprosessin jäljitteleminen olisi mahdollista. Vaikka erilaisia formereita löytyykin paperiteollisuudesta, tilaa on kuitenkin laboratoriomittakaavaiselle paperinvalmistusmenetelmälle, joka sijoittuisipilottikoneen ja perinteisen laboratorioarkkimuotin välille. Formeri, jolla saadaan aikaiseksi oikean paperinvalmistuksen kaltaiset olosuhteet ja ilmiöt on kehitetty, ja sen toiminta on testattu Nalcon Papermaking Centreof Excellence:ssä Espoossa. Formeri on yhdistetty Nalcon lähestymisjärjetelmäsimulaattoriin ja simulaattorilla aikaansaadut hydro-kemialliset ilmiöt voidaan testata nyt myös arkeista. Laitteessa on perälaatikko ja viiraosa. Perälaatikosta massa virtaa viiralle, joka liikkuu eteenpäin hihnakuljettimen hihnojen päällä. Suihku-viira -suhdetta voidaan muuttaa joko muuttamalla virtausnopeutta tai viiran nopeutta tai säätämällä perälaatikon huuliaukkoa. Formerintoiminnan testaus osoitti, että se toimii teknisesti hyvin ja tulokset ovat toistettavia ja loogisia. Arkeissa kuidut ovat orientoituneet, formaatio ja vetolujuussuhde KS/PS riippuvat voimakkaasti suihku-viira -suhteesta, kuten oikeillakinpaperikoneilla.
Resumo:
This research report presents an application of systems theory to evaluating intellectual capital (IC) as organization's ability for self-renewal. As renewal ability is a dynamic capability of an organization as a whole, rather than a static asset or an atomistic competence of separate individuals within the organization, it needs to be understood systemically. Consequently, renewal ability has to be measured with systemic methods that are based on a thorough conceptual analysis of systemic characteristics of organizations. The aim of this report is to demonstrate the theory and analysis methodology for grasping companies' systemic efficiency and renewal ability. The volume is divided into three parts. The first deals with the theory of organizations as self-renewing systems. In the second part, the principles of quantitative analysis of organizations are laid down. Finally, the detailed mathematics of the renewal indices are presented. We also assert that the indices produced by the analysis are an effective tool for the management and valuation of knowledge-intensive companies.
Resumo:
The active magnetic bearings have recently been intensively developed because of noncontact support having several advantages compared to conventional bearings. Due to improved materials, strategies of control, and electrical components, the performance and reliability of the active magnetic bearings are improving. However, additional bearings, retainer bearings, still have a vital role in the applications of the active magnetic bearings. The most crucial moment when the retainer bearings are needed is when the rotor drops from the active magnetic bearings on the retainer bearings due to component or power failure. Without appropriate knowledge of the retainer bearings, there is a chance that an active magnetic bearing supported rotor system will be fatal in a drop-down situation. This study introduces a detailed simulation model of a rotor system in order to describe a rotor drop-down situation on the retainer bearings. The introduced simulation model couples a finite element model with component mode synthesis and detailed bearing models. In this study, electrical components and electromechanical forces are not in the focus. The research looks at the theoretical background of the finite element method with component mode synthesis that can be used in the dynamic analysis of flexible rotors. The retainer bearings are described by using two ball bearing models, which include damping and stiffness properties, oil film, inertia of rolling elements and friction between races and rolling elements. Thefirst bearing model assumes that the cage of the bearing is ideal and that the cage holds the balls in their predefined positions precisely. The second bearing model is an extension of the first model and describes the behavior of the cageless bearing. In the bearing model, each ball is described by using two degrees of freedom. The models introduced in this study are verified with a corresponding actual structure. By using verified bearing models, the effects of the parameters of the rotor system onits dynamics during emergency stops are examined. As shown in this study, the misalignment of the retainer bearings has a significant influence on the behavior of the rotor system in a drop-down situation. In this study, a stability map of the rotor system as a function of rotational speed of the rotor and the misalignment of the retainer bearings is presented. In addition, the effects of parameters of the simulation procedure and the rotor system on the dynamics of system are studied.