14 resultados para donor acceptor pair
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Solceller presenteras ofta som ett miljövänligt alternativ för energiproduktion. Det största hindret för en bredare ibruktagning av kiselbaserade solceller är deras höga pris. I och med upptäckten av ledande och halvledande organiska (kolbaserade) molekyler och polymerer har ett nytt forskningsområde, organisk elektronik, vuxit fram. Den stora fördelen med organisk elektronik är att de använda materialen oftast är lösliga. Tillverkning av elektroniska komponenter kan då göras med hjälp av konventionella trycktekniker där bläcket ersatts med upplösta organiska material. Detta har potential att betydligt sänka priset för solceller. Nackdelen med organisk elektronik är att de använda materialen är komplexa, och de fysikaliska processerna i dem likaså. I min avhandling har jag studerat fotofysiken i två polymerer, P3HT och APFO3, som kan användas för att tillverka organiska solceller. Blandade med fullerenderivatet PCBM, som är en stark elektronacceptor, fås ett material som effektivt producerar elektroner och hål under belysning. I praktiken bidrar dock inte alla skapade laddningar till strömmen ur solcellen. Elektronerna och hålen kan förbli bundna till varandra i olika exciterade tillstånd, och även de som är fria kan träffa på motsatta laddningar under vägen till kontakterna och rekombinera. Centralt i mitt arbete har varit att identifiera olika typer av exciterade tillstånd i dessa solcellsmaterial, samt att bestämma deras livstider och rekombination. Metoden för detta har varit s.k. fotoinducerad absorption, som mäter fotoexcitationernas absorptioner i infraröda våglängdsområdet. De två viktigaste resultaten som presenteras i avhandlingen är en ratekvationsmodell för fotoexcitationsdynamiken i APFO3 på ultrasnabba tidsskalor (femtosekund - microsekund) och bildandet av en rekombinationshämmande dipol vid gränsytan för P3HT och PCBM som följd av värmebehandling. Dessa resultat bidrar till förståelsen av de fotofysikaliska processerna i relaterade material.
Resumo:
Fluorescence resonance energy transfer (FRET) is a non-radiative energy transfer from a fluorescent donor molecule to an appropriate acceptor molecule and a commonly used technique to develop homogeneous assays. If the emission spectrum of the donor overlaps with the excitation spectrum of the acceptor, FRET might occur. As a consequence, the emission of the donor is decreased and the emission of the acceptor (if fluorescent) increased. Furthermore, the distance between the donor and the acceptor needs to be short enough, commonly 10-100 Å. Typically, the close proximity between the donor and the acceptor is achieved via bioaffinity interactions e.g. antibody binding antigen. Large variety of donors and acceptors exist. The selection of the donor/acceptor pair should be done not only based on the requirements of FRET but also the performance expectancies and the objectives of the application should be considered. In this study, the exceptional fluorescence properties of the lanthanide chelates were employed to develop two novel homogeneous immunoassays: a non-competitive hapten (estradiol) assay based on a single binder and a dual-parametric total and free PSA assay. In addition, the quenching efficiencies and energy transfer properties of various donor/acceptor pairs were studied. The applied donors were either europium(III) or terbium(III) chelates; whereas several organic dyes (both fluorescent and quenchers) acted as acceptors. First, it was shown that if the interaction between the donor/acceptor complexes is of high quality (e.g. biotin-streptavidin) the fluorescence of the europium(III) chelate could be quenched rather efficiently. Furthermore, the quenching based homogeneous non-competitive assay for estradiol had significantly better sensitivity (~67 times) than a corresponding homogeneous competitive assay using the same assay components. Second, if the acceptors were chosen to emit at the emission minima of the terbium(III) chelate, several acceptor emissions could be measured simultaneously without significant cross-talk from other acceptors. Based on these results, the appropriate acceptors were chosen for the dual-parameter assay. The developed homogeneous dual-parameter assay was able to measure both total and free PSA simultaneously using a simple mix and measure protocol. Correlation of this assay to a heterogeneous single parameter assay was excellent (above 0.99 for both) when spiked human plasma samples were used. However, due to the interference of the sample material, the obtained concentrations were slightly lower with the homogeneous than the heterogeneous assay, especially for the free PSA. To conclude, in this work two novel immunoassay principles were developed, which both are adaptable to other analytes. However, the hapten assay requires a rather good antibody with low dissociation rate and high affinity; whereas the dual-parameter assay principle is applicable whenever two immunometric complexes can form simultaneously, provided that the requirements of FRET are fulfilled.
Resumo:
The aim of this master's thesis is to develop a two-dimensional drift-di usion model, which describes charge transport in organic solar cells. The main bene t of a two-dimensional model compared to a one-dimensional one is the inclusion of the nanoscale morphology of the active layer of a bulk heterojunction solar cell. The developed model was used to study recombination dynamics at the donor-acceptor interface. In some cases, it was possible to determine e ective parameters, which reproduce the results of the two-dimensional model in the one-dimensional case. A summary of the theory of charge transport in semiconductors was presented and discussed in the context of organic materials. Additionally, the normalization and discretization procedures required to nd a numerical solution to the charge transport problem were outlined. The charge transport problem was solved by implementing an iterative scheme called successive over-relaxation. The obtained solution is given as position-dependent electric potential, free charge carrier concentrations and current densities in the active layer. An interfacial layer, separating the pure phases, was introduced in order to describe charge dynamics occurring at the interface between the donor and acceptor. For simplicity, an e ective generation of free charge carriers in the interfacial layer was implemented. The pure phases simply act as transport layers for the photogenerated charges. Langevin recombination was assumed in the two-dimensional model and an analysis of the apparent recombination rate in the one-dimensional case is presented. The recombination rate in a two-dimensional model is seen to e ectively look like reduced Langevin recombination at open circuit. Replicating the J-U curves obtained in the two-dimensional model is, however, not possible by introducing a constant reduction factor in the Langevin recombination rate. The impact of an acceptor domain in the pure donor phase was investigated. Two cases were considered, one where the acceptor domain is isolated and another where it is connected to the bulk of the acceptor. A comparison to the case where no isolated domains exist was done in order to quantify the observed reduction in the photocurrent. The results show that all charges generated at the isolated domain are lost to recombination, but the domain does not have a major impact on charge transport. Trap-assisted recombination at interfacial trap states was investigated, as well as the surface dipole caused by the trapped charges. A theoretical expression for the ideality factor n_id as a function of generation was derived and shown to agree with simulation data. When the theoretical expression was fitted to simulation data, no interface dipole was observed.
Resumo:
Photosystem II (PSII) of oxygenic photosynthesis is susceptible to photoinhibition. Photoinhibition is defined as light induced damage resulting in turnover of the D1 protein subunit of the reaction center of PSII. Both visible and ultraviolet (UV) light cause photoinhibition. Photoinhibition induced by UV light damages the oxygen evolving complex (OEC) via absorption of UV photons by the Mn ion(s) of OEC. Under visible light, most of the earlier hypotheses assume that photoinhibition occurs when the rate of photon absorption by PSII antenna exceeds the use of the absorbed energy in photosynthesis. However, photoinhibition occurs at all light intensities with the same efficiency per photon. The aim of my thesis work was to build a model of photoinhibition that fits the experimental features of photoinhibition. I studied the role of electron transfer reactions of PSII in photoinhibition and found that changing the electron transfer rate had only minor influence on photoinhibition if light intensity was kept constant. Furthermore, quenching of antenna excitations protected less efficiently than it would protect if antenna chlorophylls were the only photoreceptors of photoinhibition. To identify photoreceptors of photoinhibition, I measured the action spectrum of photoinhibition. The action spectrum showed resemblance to the absorption spectra of Mn model compounds suggesting that the Mn cluster of OEC acts as a photoreceptor of photoinhibition under visible light, too. The role of Mn in photoinhibition was further supported by experiments showing that during photoinhibition OEC is damaged before electron transfer activity at the acceptor side of PSII is lost. Mn enzymes were found to be photosensitive under visible and UV light indicating that Mn-containing compounds, including OEC, are capable of functioning as photosensitizers both in visible and UV light. The experimental results above led to the Mn hypothesis of the mechanism of continuous-light-induced photoinhibition. According to the Mn hypothesis, excitation of Mn of OEC results in inhibition of electron donation from OEC to the oxidized primary donor P680+ both under UV and visible light. P680 is oxidized by photons absorbed by chlorophyll, and if not reduced by OEC, P680+ may cause harmful oxidation of other PSII components. Photoinhibition was also induced with intense laser pulses and it was found that the photoinhibitory efficiency increased in proportion to the square of pulse intensity suggesting that laser-pulse-induced photoinhibition is a two-photon reaction. I further developed the Mn hypothesis suggesting that the initial event in photoinhibition under both continuous and pulsed light is the same: Mn excitation that leads to the inhibition of electron donation from OEC to P680+. Under laser-pulse-illumination, another Mn-mediated inhibitory photoreaction occurs within the duration of the same pulse, whereas under continuous light, secondary damage is chlorophyll mediated. A mathematical model based on the Mn hypothesis was found to explain photoinhibition under continuous light, under flash illumination and under the combination of these two.
Resumo:
Selostus: Syys- ja talviruokinnan vaikutus yksin ja pareittain kasvatettujen minkkien lisääntymistulokseen
Resumo:
This work is dedicated to investigation of the energy spectrum of one of the most anisotropic narrow-gap semiconductors, CdSb. At the beginning of the present studies even the model of its energy band structure was not clear. Measurements of galvanomagnetic effects in wide temperature range (1.6 - 300 K) and in magnetic fields up to 30 T were chosen for clarifying of the energy spectrum in the intentionally undoped CdSb single crystals and doped with shallow impurities (In, Ag). Detection of the Shubnikov - de Haas oscillations allowed estimating the fundamental energy spectrum parameters. The shapes of the Fermi surfaces of electrons (sphere) and holes (ellipsoid), the number of the equivalent extremums for valence band (2) and their positions in the Brillouin zone were determined for the first time in this work. Also anisotropy coefficients, components of the tensor of effective masses of carriers, effective masses of density of states, nonparabolicity of the conduction and valence bands, g-factor and its anisotropy for n- and p-CdSb were estimated for the first time during these studies. All the results obtained are compared with the cyclotron resonance data and the corresponding theoretical calculations for p-CdSb. This is basic information for the analyses of the complex transport properties of CdSb and for working out the energy spectrum model of the shallow energy levels of defects and impurities in this semiconductor. It was found out existence of different mechanisms of hopping conductivity in the presence of metal - insulator transition induced by magnetic field in n- and p-CdSb. Quite unusual feature opened in CdSb is that different types of hopping conductivity may take place in the same crystal depending on temperature, magnetic field or even orientation of crystal in magnetic field. Transport properties of undoped p-CdSb samples show that the anisotropy of the resistivity in weak and strong magnetic fields is determined completely by the anisotropy of the effective mass of the holes. Temperature and magnetic field dependence of the Hall coefficient and magnetoresistance is attributed to presence of two groups of holes with different concentrations and mobilities. The analysis demonstrates that below Tcr ~ 20 K and down to ~ 6 - 7 K the low-mobile carriers are itinerant holes with energy E2 ≈ 6 meV. The high-mobile carriers, at all temperatures T < Tcr, are holes activated thermally from a deeper acceptor band to itinerant states of a shallower acceptor band with energy E1 ≈ 3 meV. Analysis of temperature dependences of mobilities confirms the existence of the heavy-hole band or a non-equivalent maximum and two equivalent maxima of the light-hole valence band. Galvanomagnetic effects in n-CdSb reveal the existence of two groups of carriers. These are the electrons of a single minimum in isotropic conduction band and the itinerant electrons of the narrow impurity band, having at low temperatures the energies above the bottom of the conduction band. It is found that above this impurity band exists second impurity band of only localized states and the energy of both impurity bands depend on temperature so that they sink into the band gap when temperature is increased. The bands are splitted by the spin, and in strong magnetic fields the energy difference between them decreases and redistribution of the electrons between the two impurity bands takes place. Mobility of the conduction band carriers demonstrates that scattering in n-CdSb at low temperatures is strongly anisotropic. This is because of domination from scattering on the neutral impurity centers and increasing of the contribution to mobility from scattering by acoustic phonons when temperature increases. Metallic conductivity in zero or weak magnetic field is changed to activated conductivity with increasing of magnetic field. This exhibits a metal-insulator transition (MIT) induced by the magnetic field due to shift of the Fermi level from the interval of extended states to that of the localized states of the electron spectrum near the edge of the conduction band. The Mott variablerange hopping conductivity is observed in the low- and high-field intervals on the insulating side of the MIT. The results yield information about the density of states, the localization radius of the resonant impurity band with completely localized states and about the donor band. In high magnetic fields this band is separated from the conduction band and lies below the resonant impurity bands.
Resumo:
Valtion rajat ylittävät terveyspalvelut Euroopan unionissa sekä Euroopan unionin säädösten merkitys ja vaikutus erityisesti lääkejakeluun ja verenluovuttajille jaettavaan tiedotusaineistoon Valtion rajat ylittävä terveydenhuolto on suuren kiinnostuksen kohteena Euroopan unionissa. Resurssien hyödyntäminen parhaalla mahdollisella tavalla ja tiedon keskittäminen ovat tarpeen terveydenhuollon kustannusten alati noustessa. Terveydenhuoltopalvelut kuuluvat Euroopan sisämarkkinoiden vapaan liikkuvuuden piiriin. Euroopan unionilla ei ole kuitenkaan toimivaltaa säädellä terveydenhuoltojärjestelmiä, vaan sen mahdollisuudet ovat enimmäkseen kansanterveyden edistämisessä ja suojelussa, myös muilla toimialueilla kuin terveydenhuollossa. Tutkimuksen tavoitteena oli tutkia Euroopan unionin säädösten vaikutusta terveydenhuoltosektoriin, erityisesti valtion rajat ylittäviin terveydenhuoltopalveluihin. Erityiskohteena olivat lääkemääräyksen toimittaminen toisen Euroopan unionin jäsenmaan apteekista, resepti-lääkkeiden maahantuonti omaan henkilökohtaiseen käyttöön, sähköisen lääkemääräyksen käyttö kansallisesti ja mahdollisuudet sen käyttöön eri jäsenmaiden välillä, online-apteekkien soveltuvuus Euroopan unionin sisämarkkinoille sekä verenluovuttajille jaettavan tiedotusaineiston yhtenäistämistarve Euroopan unionin alueella. Tutkimuksen osa-alueiden aineisto koottiin vuosina 1999–2003, jolloin Euroopan unioniin kuului 15 jäsenmaata. Apteekit toimittivat useimmiten myös ei-kansalliset, toisessa Euroopan unionin jäsenmaassa annetut lääkemääräykset. Kaikki jäsenmaat rajoittivat lääkemääräyksen vaativien lääkkeiden maahantuontia. Rajoituksia oli maahantuontimäärissä ja -tavoissa. Lisäksi sairasvakuutuskorvausten saaminen ulkomailla lunastetuista reseptilääkkeistä oli hankalaa. Sähköiset lääkemääräykset olivat käytössä vain kahdessa maassa, mutta useissa maissa suunniteltiin niiden kokeilua. Standardit ja käyttöjärjestelmät olivat erilaisia eri maissa. Euroopan unionin alueelle on perustettu online-apteekkeja, joiden toiminta on kuitenkin vaatimatonta. Verenluovuttajille annettava tiedotusaineisto ei missään maassa täyttänyt veridirektiivin vaatimuksia. Tutkimuksen tulokset osoittivat kansallisten käytäntöjen eroavaisuuksien rajoittavan valtion rajat ylittäviä terveydenhuoltopalveluita. Vaikka Euroopan unionin tavoitteena ei ole yhtenäistää terveydenhuoltojärjestelmiä, on tarpeen arvioida uudelleen unionin ja jäsenmaiden välistä työnjakoa. Kansalliset terveydenhuoltojärjestelmät eivät ole erillään Euroopan sisämarkkinoista, jotka merkittävästi vaikuttavat terveydenhuoltoon.
Resumo:
Nanoparticles offer adjustable and expandable reactive surface area compared to the more traditional solid phase forms utilized in bioaffinity assays due to the high surface to-volume ratio. The versatility of nanoparticles is further improved by the ability to incorporate various molecular complexes such as luminophores into the core. Nanoparticle labels composed of polystyrene, silica, inorganic crystals doped with high number of luminophores, preferably lanthanide(III) complexes, are employed in bioaffinity assays. Other label species such as semiconductor crystals (quantum dots) or colloidal gold clusters are also utilized. The surface derivatization of such particles with biomolecules is crucial for the applicability to bioaffinity assays. The effectiveness of a coating is reliant on the biomolecule and particle surface characteristics and the selected coupling technique. The most critical aspects of the particle labels in bioaffinity assays are their size-dependent features. For polystyrene, silica and inorganic phosphor particles, these include the kinetics, specific activity and colloidal stability. For quantum dots and gold colloids, the spectral properties are also dependent on particle size. This study reports the utilization of europium(III)-chelate-embedded nanoparticle labels in the development of bioaffinity assays. The experimental covers both the heterogeneous and homogeneous assay formats elucidating the wide applicability of the nanoparticles. It was revealed that the employment of europium(III) nanoparticles in heterogeneous assays for viral antigens, adenovirus hexon and hepatitis B surface antigen (HBsAg), resulted in sensitivity improvement of 10-1000 fold compared to the reference methods. This improvement was attributed to the extreme specific activity and enhanced monovalent affinity of the nanoparticles conjugates. The applicability of europium(III)-chelate-doped nanoparticles to homogeneous assay formats were proved in two completely different experimental settings; assays based on immunological recognition or proteolytic activity. It was shown that in addition to small molecule acceptors, particulate acceptors may also be employed due to the high specific activity of the particles promoting proximity-induced reabsorptive energy transfer in addition to non-radiative energy transfer. The principle of proteolytic activity assay relied on a novel dual-step FRET concept, wherein the streptavidin-derivatized europium(III)-chelate-doped nanoparticles were used as donors for peptide substrates modified with biotin and terminal europium emission compliant primary acceptor and a secondary quencher acceptor. The recorded sensitized emission was proportional to the enzyme activity, and the assay response to various inhibitor doses was in agreement with those found in literature showing the feasibility of the technique. Experiments regarding the impact of donor particle size on the extent of direct donor fluorescence and reabsorptive excitation interference in a FRET-based application was conducted with differently sized europium(III)-chelate-doped nanoparticles. It was shown that the size effect was minimal
Resumo:
The prevalence of inflammatory based diseases has increased in industrialized countries over the last decades. For allergic diseases, two primary hypotheses have been proposed to explain this phenomenon, namely the hygiene and dietary evolution based hypothesis. Particularly, the reduced early exposure to microbes and an increase in the amount of polyunsaturated fatty acids (especially n-6 PUFA) in the diet have been discussed. Often, these two factors have been studied independently, even though both factors have been shown to possess potential health benefits and their mode of action to share similar mechanisms. The hypothesis of the present study was that demonstrate that PUFA and probiotics are not separate entities as such but do interact with each other. In the present study, we investigated whether maternal diet and atopic status influence the PUFA composition of breast milk and serum fatty acids of infants, and whether the fatty acid absorption and utilization of infant formula fatty acids is affected by supplementation of infant formula with probiotic bacteria (Lactobacillus GG and Bifidobacterium lactis Bb-12). Moreover, we investigated the mechanisms by which different PUFA influence the physicochemical and functional properties of probiotics as well as functionality of epithelial cells in vitro. We demonstrated a carry-over effect of dietary fatty acids from maternal diet via breast milk into infants’ serum lipid fatty acids. Our data confirmed the previously shown allergy –related PUFA level imbalances, though it did not fully support the impaired desaturation and elongation capacity hypothesis. We also showed that PUFA incorporation into phospholipids of infants was influenced by probiotics in infant formula in a strain dependent manner. Especially,Bifidobacterium lactis Bb-12 in infant formula promoted the utilization of n-3 PUFA. Mechanistically, we demonstrated that probiotics (Lactobacillus GG, Lactobacillus casei Shirota and Lactobacillus bulgaricus) did incorporate and interconvert exogenous free PUFA in the growth medium into bacterial fatty acids strain and PUFA dependently. In general, high concentrations of free PUFA inhibited the growth and mucus adhesion of probiotics, whereas low concentrations of specific long chain PUFA were found to promote the growth and mucus adhesion of Lactobacillus casei Shirota. These effects were paralleled with only minor alterations in hydrophobicity and electron donor – electron acceptor properties of lactobacilli. Furthermore, free PUFA were also demonstrated to alter the adhesion capacity of the intestinal epithelial cells; n-6 PUFA tended to inhibit the Caco-2 adhesion of probiotics, whereas n-3 PUFA had either no or minor effects or even promote the bacterial adhesion (especially Lactobacillus casei Shirota) to PUFA treated Caco-2 cells. The results of this study demonstrate the close and bilateral interactions between dietary PUFA and probiotics. Probiotics were shown to influence the absorption and utilization of dietary PUFA, whereas PUFA were shown to alter the functional properties of both probiotics and mucosal epithelia. These findings suggest that a more thorough understanding of interactions between PUFA and intestinal microbiota is a prerequisite, when the beneficial effects of new functional foods containing probiotics are designed and planned for human intervention studies.
Resumo:
This thesis discusses the design and implementation of a real-time musical pair improvisation scenario for mobile devices. In the scenario transferring musical information over a network connection was required. The suitability of available wireless communication technologies was evaluated and communication was analyzed and designed on multiple layers of TCP/IP protocol stack. Also an application layer protocol was designed and implemented for the scenario. The implementation was integrated into a mobile musical software for children using available software components and libraries although the used platform lead to hardware and software constraints. Software limitations were taken into account in design. The results show that real-time musical improvisation can be implemented with wireless communication and mobile technology. The results also show that link layer had the most significant effect on real-time communication in the scenario.
Resumo:
The Switched Reluctance technology is probably best suited for industrial low-speed or zerospeed applications where the power can be small but the torque or the force in linear movement cases might be relatively high. Because of its simple structure the SR-motor is an interesting alternative for low power applications where pneumatic or hydraulic linear drives are to be avoided. This study analyses the basic parts of an LSR-motor which are the two mover poles and one stator pole and which form the “basic pole pair” in linear-movement transversal-flux switchedreluctance motors. The static properties of the basic pole pair are modelled and the basic design rules are derived. The models developed are validated with experiments. A one-sided one-polepair transversal-flux switched-reluctance-linear-motor prototype is demonstrated and its static properties are measured. The modelling of the static properties is performed with FEM-calculations. Two-dimensional models are accurate enough to model the static key features for the basic dimensioning of LSRmotors. Three-dimensional models must be used in order to get the most accurate calculation results of the static traction force production. The developed dimensioning and modelling methods, which could be systematically validated by laboratory measurements, are the most significant contributions of this thesis.
Resumo:
Resonance energy transfer (RET) is a non-radiative transfer of the excitation energy from the initially excited luminescent donor to an acceptor. The requirements for the resonance energy transfer are: i) the spectral overlap between the donor emission spectrum and the acceptor absorption spectrum, ii) the close proximity of the donor and the acceptor, and iii) the suitable relative orientations of the donor emission and the acceptor absorption transition dipoles. As a result of the RET process the donor luminescence intensity and the donor lifetime are decreased. If the acceptor is luminescent, a sensitized acceptor emission appears. The rate of RET depends strongly on the donor–acceptor distance (r) and is inversely proportional to r6. The distance dependence of RET is utilized in binding assays. The proximity requirement and the selective detection of the RET-modified emission signal allow homogeneous separation free assays. The term lanthanide-based RET is used when luminescent lanthanide compounds are used as donors. The long luminescence lifetimes, the large Stokes’ shifts and the intense, sharply-spiked emission spectra of the lanthanide donors offer advantages over the conventional organic donor molecules. Both the organic lanthanide chelates and the inorganic up-converting phosphor (UCP) particles have been used as donor labels in the RET based binding assays. In the present work lanthanide luminescence and lanthanide-based resonance energy transfer phenomena were studied. Luminescence lifetime measurements had an essential role in the research. Modular frequency-domain and time-domain luminometers were assembled and used successfully in the lifetime measurements. The frequency-domain luminometer operated in the low frequency domain ( 100 kHz) and utilized a novel dual-phase lock-in detection of the luminescence. One of the studied phenomena was the recently discovered non-overlapping fluorescence resonance energy transfer (nFRET). The studied properties were the distance and temperature dependences of nFRET. The distance dependence was found to deviate from the Förster theory and a clear temperature dependence was observed whereas conventional RET was completely independent of the temperature. Based on the experimental results two thermally activated mechanisms were proposed for the nFRET process. The work with the UCP particles involved the measurement of the luminescence properties of the UCP particles synthesized in our laboratory. The goal of the UCP particle research is to develop UCP donor labels for binding assays. In the present work the effect of the dopant concentrations and the core–shell structure on the total up-conversion luminescence intensity, the red–green emission ratio, and the luminescence lifetime was studied. Also the non-radiative nature of the energy transfer from the UCP particle donors to organic acceptors was demonstrated for the first time in aqueous environment and with a controlled donor–acceptor distance.
Resumo:
Solceller baserade på organiska halvledare erbjuder en möjlighet till storskalig och billig solenergiproduktion. Organiska halvledare har den fördelen att de är lösningsprocesserbara vilket gör att solceller och andra elektroniska komponenter baserade på dessa halvledare kan tillverkas vid låga temperaturer och med liten energiförbrukning. Nackdelen med dessa material är deras strukturella och energetiska oordning som leder till lägre effektivitet. För att organiska solceller ska kunna kommersialiseras krävs grundläggande insikter i de olika processer som begränsar effektiviteten. En stor del av forskningen om dessa processer har varit fokuserad kring egenskaperna av solcellens olika komponenter (de aktiva materialen) som sådana, medan gränsytorna mellan olika material har fått mindre uppmärksamhet. Gränsytor mellan olika material har distinkt olika egenskaper jämfört med ett rent material, och gränsytors olika egenskaper kan ha en väldigt stor inverkan på hur solcellerna fungerar. Syftet med denna avhandling är att klargöra några olika gränsyterelaterade effekter i organiska dioder och solceller. De gränsytor som behandlas är gränsytan mellan kontakten och det aktiva lagret (metall-organisk) och gränsytan mellan donor och acceptor (organisk-organisk). Resultaten visar att metall-organiska gränsytor måste designas noggrant för att begränsa förlust av effektivitet. En icke-idealisk kontakt leder till starkt reducerad effektivitet på grund av att elektronerna extraheras ineffektivt. Även till synes idealiska kontakter kan orsaka förluster genom spontan laddningsöverföring från metallen till det organiska lagret som effektivt sett minskar på den spänning som cellen kan alstra. Den organisk-organiska gränsytan påverkar hur mycket ström cellen kan alstra och beroende på gränsytans beskaffenhet kan de negativa rekombinationsprocesserna i materialet kontrolleras. ------------------------------------------------- Orgaanisille puolijohteille perustuvat aurinkokennot mahdollistavat suurimuotoisen ja edullisen aurinkoenergiatuotannon. Orgaanisten puolijohteiden etu on että ne voidaan liuottaa, jolloin aurinkokennot ja muut näille johteille perustuvat elektroniset komponentit voidaan valmistaa alhaisessa lämpötilassa kuluttaen vähän energiaa. Materiaalien huonona puolena on kuitenkin niiden rakenteellinen ja energeettinen epäjärjestys, jonka seurauksena niiden tehokkuus on huonompi. Orgaanisten aurinkokennojen kaupallistaminen edellyttää perustavanlaatuista ymmärystä tehokkuutta rajoittavista prosesseista. Aurinkokennotutkimus on pääosin keskittynyt aurinkokennon eri komponenttien (aktiivisten materiaalien) ominaisuuksiin, kun taas eri materiaalien rajapinnat ovat jääneet vähemmälle huomiolle. Eri materiaalien välisillä rajapinnoilla on huomattavan erilaisia ominaisuuksia verrattuna puhtaisiin materiaaleihin. Rajapintojen ominaisuudet voivat kuitenkin vaikuttaa merkittävästi aurinkokennojen toimintaan. Tämän väitöstutkimuksen tarkoituksena on selventää joitain rajapintoihin liittyviä toimintoja orgaanisissa diodeissa ja aurinkokennoissa. Käsiteltävät rajapinnat ovat rajapinta kontaktin ja aktiivisen kerroksen välillä (metallis-orgaaninen) ja rajapinta donorin ja akseptorin välillä (orgaanis-orgaaninen). Tutkimustulokset osoittavat, että metallis-orgaaniset rajapinnat tulee suunnitella huolellisesti, jotta tehokkuuden alenemista voidaan rajoittaa. Mikäli kontakti ei ole ideaalisti suunniteltu, vähenee tehokkuus huomattavasti, mikä johtuu elektronien tehottomasta ekstrahoinnista. Jopa ideaalisilta vaikuttavat kontaktit voivat johtaa tehokkuuden alenemiseen, mikäli varaus siirtyy spontaanisti metallista orgaaniseen kerrokseen, sillä tämä alentaa jännitettä jonka kenno voi tuottaa. Kennon orgaanis-orgaaninen rajapinta vaikuttaa siihen, kuinka paljon virtaa kenno pystyy tuottamaan. Rajapinnan ominaisuuksista riippuen materiaalin rekombinaatio on hallittavissa.
Resumo:
In this work emission, optical, electrical and magnetic properties of the d- and f- elements doped zinc selenide crystals were investigated within a wide temperature range. Doping was performed in various technological processes: during the growth by chemical vapor transport method; by thermal diffusion from the Bi or Zn melt. Concentration of the doping impurity in the crystals was controlled by amount of the dopant in the source material or by its concentration in the doping media. Special interest in the work was paid to the influence of the different concentrations of Cr and Yb impurities on ZnSe crystals’ properties, correlations between observed effects and similarities with the Ni, Mn and Gd dopants are analysed. Possibility of formation of the excitons bound to the doping d-ions was shown. In contrast to this, it was observed that f-elements do not bound excitons, but prevent formation of excitons bound to some uncontrolled impurities. A mechanism of Cr doping impurity interaction with background impurities and zinc selenide structural defects was proposed based on experimental data. An assumption about resonant energy transfer between double charged chromium ions and complexes based on crystals’ vacancy defects was made. A correlation between emission and magnetic properties of the d- ions doped samples was established. Based on this correlation a mechanism explaining the concentration quench of the emission was proposed. It was found that f-ions bind electrically active shallow and deep donor and acceptor states of background impurity to electrically neutral complexes. This may be observed as “purification” of ZnSe crystals by doping with the rare-earth elements, resulting i tendency of the properties of f-ion doped crystals to the properties of intrinsic crystals, but with smaller concentration of uncontrolled native and impurity defects. A possible interpretation of this effect was proposed. It was shown that selenium substituting impurities decrease efficiency of the Yb doping. Based on this experimental results an attempt to determine ytterbium ion surroundings in the crystal lattice was made. It was shown that co-doping of zinc selenide crystals with the d- and f- ions leads to the combination of the impurities influence on the material’s properties. On the basis of obtained data an interaction mechanism of the d- and f-elements co-dopants was proposed. Guided by the model of the ytterbium ion incorporation in the selenide sublattice of the ZnSe crystals, an assumption about stabilization of single charged chromium ions in the zinc sublattice crystal nodes, by means of formation of the local charge compensating clusters, was made.