3 resultados para distributed feedback laser diode (DFB LD)
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Diplomityössä on tutkittu reaaliaikaisen toimintolaskennan toteuttamista suomalaisen lasersiruja valmistavan PK-yrityksen tietojärjestelmään. Lisäksi on tarkasteltu toimintolaskennan vaikutuksia operatiiviseen toimintaan sekä toimintojen johtamiseen. Työn kirjallisuusosassa on käsitelty kirjallisuuslähteiden perusteella toimintolaskennan teorioita, laskentamenetelmiä sekä teknisessä toteutuksessa käytettyjä teknologioita. Työn toteutusosassa suunniteltiin ja toteutettiin WWW-pohjainen toimintolaskentajärjestelmä case-yrityksen kustannuslaskennan sekä taloushallinnon avuksi. Työkalu integroitiin osaksi yrityksen toiminnanohjaus- sekä valmistuksenohjausjärjestelmää. Perinteisiin toimintolaskentamallien tiedonkeruujärjestelmiin verrattuna case-yrityksessä syötteet toimintolaskentajärjestelmälle tulevat reaaliaikaisesti osana suurempaa tietojärjestelmäintegraatiota.Diplomityö pyrkii luomaan suhteen toimintolaskennan vaatimusten ja tietokantajärjestelmien välille. Toimintolaskentajärjestelmää yritys voi hyödyntää esimerkiksi tuotteiden hinnoittelussa ja kustannuslaskennassa näkemällä tuotteisiin liittyviä kustannuksia eri näkökulmista. Päätelmiä voidaan tehdä tarkkaan kustannusinformaatioon perustuen sekä määrittää järjestelmän tuottaman datan perusteella, onko tietyn projektin, asiakkuuden tai tuotteen kehittäminen taloudellisesti kannattavaa.
Resumo:
Diplomityössä tutkitaan diodilaserhitsausta mahdollisena teollisuuden menetelmänä ja menetelmän vaatimuksia hitsattaessa ohutlevyjä. Työssä tutkittavat materiaalit ovat kylmävalssattu teräs ja ruostumaton teräs sekä liitosmuotoina päittäis-, laippa- ja päällekkäisliitos. Materiaalivahvuudet ovat 0,50 mm:stä 1,50 mm:iin. Työn tavoitteena on määrittää näille kyseisille materiaaleille ja liitosmuodoille hitsausnopeus levynvahvuuden funktiona. Lisäksi käsitellään diodilaserin rakennetta, säteen muodostusta, säteen muokkaamista, säteen analysointia ja säteen turvallisuuteen liittyviä asioita. Suoritetaan vertailua käytössä oleviin muihin lasertyöstömenetelmiin konepajoissa ja tehdään arvio mahdollisen diodilaserinvestoinnin kannattavuudesta. Diodilaserhitsauskokeissa käytettiin Hämeen ammattikorkeakoulun Riihimäen yksikön 1 kW:n tehoista diodilaseria. Koekappaleet leikattiin suuntaisleikkurilla. Osalle hitsatuista kappaleista tehtiin poikittaiset vetokokeet ja mitattiin mikrokovuudet. Virheitä tutkittiin silmämääräisesti sekä radiografisella kuvauksella. Kaikille tutkituille liitoksille, materiaaleille ja vahvuuksille saatiin määriteltyä hitsausnopeudet. Tehtyjen testien perusteella suuntaisleikkurin käyttö on mahdollista. Lisäksi havaittiin suojakaasun käytön myötä, että kirkkaan sulan aiheuttama heijastavuuden kasvu edellyttää hitsausnopeuden pienentämistä.
Resumo:
This study investigated the surface hardening of steels via experimental tests using a multi-kilowatt fiber laser as the laser source. The influence of laser power and laser power density on the hardening effect was investigated. The microhardness analysis of various laser hardened steels was done. A thermodynamic model was developed to evaluate the thermal process of the surface treatment of a wide thin steel plate with a Gaussian laser beam. The effect of laser linear oscillation hardening (LLOS) of steel was examined. An as-rolled ferritic-pearlitic steel and a tempered martensitic steel with 0.37 wt% C content were hardened under various laser power levels and laser power densities. The optimum power density that produced the maximum hardness was found to be dependent on the laser power. The effect of laser power density on the produced hardness was revealed. The surface hardness, hardened depth and required laser power density were compared between the samples. Fiber laser was briefly compared with high power diode laser in hardening medium-carbon steel. Microhardness (HV0.01) test was done on seven different laser hardened steels, including rolled steel, quenched and tempered steel, soft annealed alloyed steel and conventionally through-hardened steel consisting of different carbon and alloy contents. The surface hardness and hardened depth were compared among the samples. The effect of grain size on surface hardness of ferritic-pearlitic steel and pearlitic-cementite steel was evaluated. In-grain indentation was done to measure the hardness of pearlitic and cementite structures. The macrohardness of the base material was found to be related to the microhardness of the softer phase structure. The measured microhardness values were compared with the conventional macrohardness (HV5) results. A thermodynamic model was developed to calculate the temperature cycle, Ac1 and Ac3 boundaries, homogenization time and cooling rate. The equations were numerically solved with an error of less than 10-8. The temperature distributions for various thicknesses were compared under different laser traverse speed. The lag of the was verified by experiments done on six different steels. The calculated thermal cycle and hardened depth were compared with measured data. Correction coefficients were applied to the model for AISI 4340 steel. AISI 4340 steel was hardened by laser linear oscillation hardening (LLOS). Equations were derived to calculate the overlapped width of adjacent tracks and the number of overlapped scans in the center of the scanned track. The effect of oscillation frequency on the hardened depth was investigated by microscopic evaluation and hardness measurement. The homogeneity of hardness and hardened depth with different processing parameters were investigated. The hardness profiles were compared with the results obtained with conventional single-track hardening. LLOS was proved to be well suitable for surface hardening in a relatively large rectangular area with considerable depth of hardening. Compared with conventional single-track scanning, LLOS produced notably smaller hardened depths while at 40 and 100 Hz LLOS resulted in higher hardness within a depth of about 0.6 mm.