10 resultados para distributed application
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Työssä käsitellään selainkäyttöliittymää käyttävien oliopohjaisten tietokantasovellusten toteuttamista. Erityisesti keskitytään olio- ja relaatiomallien yhteensovittamiseen ja oliopohjaisten selainkäyttöliittymien toteutukseen Java-servlettien ja JSP-sivujen avulla. Myös hajautetut sovellusarkkitehtuurit käydään läpi ja niiden toteuttamista arvioidaan servlet-sovellusten näkökulmasta. Työssä on toteutettu selainkäyttöliittymän avulla hallittava kaksitasoarkkitehtuuria käyttävä oliopohjainen sovellus Ilmatieteen laitoksen tuotantojärjestelmän seurantaan. Sovellus mahdollistaa mm. tuotantoajojen ja laajempien tuotantoketjujen suoritusaikojen tilastollisen seurannan. Työn tuloksena todettiin Java-servlettien ja JSP-sivujen olevan suorituskykyinen ja monipuolinen ratkaisu selainkäyttöliittymien toteuttamiseen. Olio- ja relaatiomallien väliset erot sekä käyttöliittymän eriyttäminen toimintalogiikasta osoittautuivat ongelmakohdiksi.
Resumo:
Tarve tälle työlle on noussut sanomapalvelinsoveluksissa (servers) esiintyvistä ongelmista. Sanomapalvelinsovelluksia käytetään lähettämään ja vastaanottamaan sanomia paperiteollisuuden myynnin ja jakelun järjestelmässä maantieteellisesti erillään olevista paperiteollisuuden tehtaista. Sanomapalvelinsovelusten kunnollinen toimivuus on tärkeää koko järjestelmän toimivuuden kannalta, koska nämä palvelimet käsittelevät päivittäin tuhansia sanomia, jotka sisältävät merkityksellistä järjestelmätietoa. Tässä työssä on tutkittu mahdollisia toteutustekniikoita ja näihin tutkimuksiin pohjautuen toteutettu työkalut sanomapalvelinsovellusten testaukseen ja valvontaan. Sovellus-arkkituuritekniikoita tutkittaessa tutkimus rajattiin 3-tasoarkkitehtuuritekniikkaan, erityisesti TUXEDOTM -järjestelmätekniikkaan, koska toteutettavaa sovellusta käytetään hajautetussa sovellusympäristössä. Sovellusasiakkaan (client) toteutusta varten tutkittiin ja vertailtiin XML-tekniikkaa ja Microsoft Visual C++ -tekniikkaa käytettynä Tieto-Enatorin Phobos Interaktiivisen C++ -luokkakirjaston kanssa. XML-tekniikoita sekä Visual C++ ja Phobos-luokkakirjasto –tekniikkaa tutkittiin niiltä osin, mitä tarvittiin sanomamerkkijonojen katseluun. XML-tietokantatekniikoita tutkittiin mahdollisena vaihtoehtona tietokanta ja sovelluspalvelintekniikalle. Työn ensimmäisenä tavoitteena oli toteuttaa työkalu sanomapalvelinsovellusten testaamiseen. Toisena tavoitteena oli toteuttaa työkalu sanomien sisällön oikeellisuuden valvontaan. Kolmantena tavoitteena oli analysoida olemassaolevaa sanomavirheiden valvontasovellusta ja kehittää sitä eteenpäin. Diplomityön tuloksena toteutettiin sovellus sanomapalvelinsovellusten testaamiseen ja valvontaan. Tutkituista asiakassovelustekniikoista valittiin toteutus-tekniikaksi MS Visual C++ käytettynä Phobos Interaktiivisen C++ luokkakirjaston kanssa tekniikan tunnettavuuden vuoksi. 3-taso TUXEDOTM-tekniikka valittiin sovelluksen arkkitehtuuriksi. Lisäksi löydettiin parannuksia olemassa oleviin sanoma-virheiden valvontatoimintoihin. Tutkitut toteutustekniikat ovat yleisiä ja niitä voidaan käyttää, kun toteutetaan samanlaisia sovelluksia samanlaisiin sovellusympäristöihin.
Resumo:
Korkeasaatavuus on olennainen osa nykyaikaisissa, integroiduissa yritysjärjestelmissä. Yritysten kansainvälistyessä tiedon on oltava saatavissa ympärivuorokautisesti, mikä asettaa yhä kovempia vaatimuksia järjestelmän yksittäisten osien saatavuudelle. Kasvava tietojärjestelmäintegraatio puolestaan tekee järjestelmän solmukohdista kriittisiä liiketoiminnan kannalta. Tässä työssä perehdytään hajautettujen järjestelmien ominaisuuksiin ja niiden asettamiin haasteisiin. Esiteltyjä teknologioita ovat muun muassa väliohjelmistot, klusterit ja kuormantasaus. Yrityssovellusten pohjana käytetty Java 2 Enterprise Edition (J2EE) -teknologia käsitellään olennaisilta osiltaan. Työssä käytetään sovelluspalvelinalustana BEA WebLogic Server -ohjelmistoa, jonka ominaisuudet käydään läpi hajautuksen kannalta. Työn käytännön osuudessa toteutetaan kahdelle erilaiselle olemassa olevalle yrityssovellukselle korkean saatavuuden sovelluspalvelinympäristö, joissa sovellusten asettamat rajoitukset on otettu huomioon.
Resumo:
Globaalin talouden rakenteet muuttuvat jatkuvasti. Yritykset toimivat kansainvälisillä markkinoilla aiempaa enemmän. Tuotannon lisäämiseksi monet yritykset ovat ulkoistaneet tuotteidensa tuki- ja ylläpitotoiminnot halvan työvoiman maihin. Yritykset voivat tällöin keskittää toimintansa ydinosamiseensa. Vapautuneita resursseja voidaan käyttää yrityksen sisäisessä tuotekehityksessä ja panostaa seuraavan sukupolven tuotteiden ja teknologioiden kehittämiseen. Diplomityö esittelee Globaalisti hajautetun toimitusmallin Internet-palveluntarjoajalle jossa tuotteiden tuki- ja ylläpito on ulkoistettu Intiaan. Teoriaosassa esitellään erilaisia toimitusmalleja ja keskitytään erityisesti hajautettuun toimitusmalliin. Tämän lisäksi luetellaan valintakriteerejä joilla voidaan arvioida projektin soveltuvuutta ulkoistettavaksi sekä esitellään mahdollisuuksia ja uhkia jotka sisältyvät globaaliin ulkoistusprosessiin. Käytäntöosassa esitellään globaali palvelun toimittamisprosessi joka on kehitetty Internet-palveluntarjoajan tarpeisiin.
Resumo:
The past few decades have seen a considerable increase in the number of parallel and distributed systems. With the development of more complex applications, the need for more powerful systems has emerged and various parallel and distributed environments have been designed and implemented. Each of the environments, including hardware and software, has unique strengths and weaknesses. There is no single parallel environment that can be identified as the best environment for all applications with respect to hardware and software properties. The main goal of this thesis is to provide a novel way of performing data-parallel computation in parallel and distributed environments by utilizing the best characteristics of difference aspects of parallel computing. For the purpose of this thesis, three aspects of parallel computing were identified and studied. First, three parallel environments (shared memory, distributed memory, and a network of workstations) are evaluated to quantify theirsuitability for different parallel applications. Due to the parallel and distributed nature of the environments, networks connecting the processors in these environments were investigated with respect to their performance characteristics. Second, scheduling algorithms are studied in order to make them more efficient and effective. A concept of application-specific information scheduling is introduced. The application- specific information is data about the workload extractedfrom an application, which is provided to a scheduling algorithm. Three scheduling algorithms are enhanced to utilize the application-specific information to further refine their scheduling properties. A more accurate description of the workload is especially important in cases where the workunits are heterogeneous and the parallel environment is heterogeneous and/or non-dedicated. The results obtained show that the additional information regarding the workload has a positive impact on the performance of applications. Third, a programming paradigm for networks of symmetric multiprocessor (SMP) workstations is introduced. The MPIT programming paradigm incorporates the Message Passing Interface (MPI) with threads to provide a methodology to write parallel applications that efficiently utilize the available resources and minimize the overhead. The MPIT allows for communication and computation to overlap by deploying a dedicated thread for communication. Furthermore, the programming paradigm implements an application-specific scheduling algorithm. The scheduling algorithm is executed by the communication thread. Thus, the scheduling does not affect the execution of the parallel application. Performance results achieved from the MPIT show that considerable improvements over conventional MPI applications are achieved.
Resumo:
Simulation has traditionally been used for analyzing the behavior of complex real world problems. Even though only some features of the problems are considered, simulation time tends to become quite high even for common simulation problems. Parallel and distributed simulation is a viable technique for accelerating the simulations. The success of parallel simulation depends heavily on the combination of the simulation application, algorithm and message population in the simulation is sufficient, no additional delay is caused by this environment. In this thesis a conservative, parallel simulation algorithm is applied to the simulation of a cellular network application in a distributed workstation environment. This thesis presents a distributed simulation environment, Diworse, which is based on the use of networked workstations. The distributed environment is considered especially hard for conservative simulation algorithms due to the high cost of communication. In this thesis, however, the distributed environment is shown to be a viable alternative if the amount of communication is kept reasonable. Novel ideas of multiple message simulation and channel reduction enable efficient use of this environment for the simulation of a cellular network application. The distribution of the simulation is based on a modification of the well known Chandy-Misra deadlock avoidance algorithm with null messages. The basic Chandy Misra algorithm is modified by using the null message cancellation and multiple message simulation techniques. The modifications reduce the amount of null messages and the time required for their execution, thus reducing the simulation time required. The null message cancellation technique reduces the processing time of null messages as the arriving null message cancels other non processed null messages. The multiple message simulation forms groups of messages as it simulates several messages before it releases the new created messages. If the message population in the simulation is suffiecient, no additional delay is caused by this operation A new technique for considering the simulation application is also presented. The performance is improved by establishing a neighborhood for the simulation elements. The neighborhood concept is based on a channel reduction technique, where the properties of the application exclusively determine which connections are necessary when a certain accuracy for simulation results is required. Distributed simulation is also analyzed in order to find out the effect of the different elements in the implemented simulation environment. This analysis is performed by using critical path analysis. Critical path analysis allows determination of a lower bound for the simulation time. In this thesis critical times are computed for sequential and parallel traces. The analysis based on sequential traces reveals the parallel properties of the application whereas the analysis based on parallel traces reveals the properties of the environment and the distribution.
Resumo:
The aim of this study was to simulate blood flow in thoracic human aorta and understand the role of flow dynamics in the initialization and localization of atherosclerotic plaque in human thoracic aorta. The blood flow dynamics in idealized and realistic models of human thoracic aorta were numerically simulated in three idealized and two realistic thoracic aorta models. The idealized models of thoracic aorta were reconstructed with measurements available from literature, and the realistic models of thoracic aorta were constructed by image processing Computed Tomographic (CT) images. The CT images were made available by South Karelia Central Hospital in Lappeenranta. The reconstruction of thoracic aorta consisted of operations, such as contrast adjustment, image segmentations, and 3D surface rendering. Additional design operations were performed to make the aorta model compatible for the numerical method based computer code. The image processing and design operations were performed with specialized medical image processing software. Pulsatile pressure and velocity boundary conditions were deployed as inlet boundary conditions. The blood flow was assumed homogeneous and incompressible. The blood was assumed to be a Newtonian fluid. The simulations with idealized models of thoracic aorta were carried out with Finite Element Method based computer code, while the simulations with realistic models of thoracic aorta were carried out with Finite Volume Method based computer code. Simulations were carried out for four cardiac cycles. The distribution of flow, pressure and Wall Shear Stress (WSS) observed during the fourth cardiac cycle were extensively analyzed. The aim of carrying out the simulations with idealized model was to get an estimate of flow dynamics in a realistic aorta model. The motive behind the choice of three aorta models with distinct features was to understand the dependence of flow dynamics on aorta anatomy. Highly disturbed and nonuniform distribution of velocity and WSS was observed in aortic arch, near brachiocephalic, left common artery, and left subclavian artery. On the other hand, the WSS profiles at the roots of branches show significant differences with geometry variation of aorta and branches. The comparison of instantaneous WSS profiles revealed that the model with straight branching arteries had relatively lower WSS compared to that in the aorta model with curved branches. In addition to this, significant differences were observed in the spatial and temporal profiles of WSS, flow, and pressure. The study with idealized model was extended to study blood flow in thoracic aorta under the effects of hypertension and hypotension. One of the idealized aorta models was modified along with the boundary conditions to mimic the thoracic aorta under the effects of hypertension and hypotension. The results of simulations with realistic models extracted from CT scans demonstrated more realistic flow dynamics than that in the idealized models. During systole, the velocity in ascending aorta was skewed towards the outer wall of aortic arch. The flow develops secondary flow patterns as it moves downstream towards aortic arch. Unlike idealized models, the distribution of flow was nonplanar and heavily guided by the artery anatomy. Flow cavitation was observed in the aorta model which was imaged giving longer branches. This could not be properly observed in the model with imaging containing a shorter length for aortic branches. The flow circulation was also observed in the inner wall of the aortic arch. However, during the diastole, the flow profiles were almost flat and regular due the acceleration of flow at the inlet. The flow profiles were weakly turbulent during the flow reversal. The complex flow patterns caused a non-uniform distribution of WSS. High WSS was distributed at the junction of branches and aortic arch. Low WSS was distributed at the proximal part of the junction, while intermedium WSS was distributed in the distal part of the junction. The pulsatile nature of the inflow caused oscillating WSS at the branch entry region and inner curvature of aortic arch. Based on the WSS distribution in the realistic model, one of the aorta models was altered to induce artificial atherosclerotic plaque at the branch entry region and inner curvature of aortic arch. Atherosclerotic plaque causing 50% blockage of lumen was introduced in brachiocephalic artery, common carotid artery, left subclavian artery, and aortic arch. The aim of this part of the study was first to study the effect of stenosis on flow and WSS distribution, understand the effect of shape of atherosclerotic plaque on flow and WSS distribution, and finally to investigate the effect of lumen blockage severity on flow and WSS distributions. The results revealed that the distribution of WSS is significantly affected by plaque with mere 50% stenosis. The asymmetric shape of stenosis causes higher WSS in branching arteries than in the cases with symmetric plaque. The flow dynamics within thoracic aorta models has been extensively studied and reported here. The effects of pressure and arterial anatomy on the flow dynamic were investigated. The distribution of complex flow and WSS is correlated with the localization of atherosclerosis. With the available results we can conclude that the thoracic aorta, with complex anatomy is the most vulnerable artery for the localization and development of atherosclerosis. The flow dynamics and arterial anatomy play a role in the localization of atherosclerosis. The patient specific image based models can be used to diagnose the locations in the aorta vulnerable to the development of arterial diseases such as atherosclerosis.
Resumo:
Technological developments in microprocessors and ICT landscape have made a shift to a new era where computing power is embedded in numerous small distributed objects and devices in our everyday lives. These small computing devices are ne-tuned to perform a particular task and are increasingly reaching our society at every level. For example, home appliances such as programmable washing machines, microwave ovens etc., employ several sensors to improve performance and convenience. Similarly, cars have on-board computers that use information from many di erent sensors to control things such as fuel injectors, spark plug etc., to perform their tasks e ciently. These individual devices make life easy by helping in taking decisions and removing the burden from their users. All these objects and devices obtain some piece of information about the physical environment. Each of these devices is an island with no proper connectivity and information sharing between each other. Sharing of information between these heterogeneous devices could enable a whole new universe of innovative and intelligent applications. The information sharing between the devices is a diffcult task due to the heterogeneity and interoperability of devices. Smart Space vision is to overcome these issues of heterogeneity and interoperability so that the devices can understand each other and utilize services of each other by information sharing. This enables innovative local mashup applications based on shared data between heterogeneous devices. Smart homes are one such example of Smart Spaces which facilitate to bring the health care system to the patient, by intelligent interconnection of resources and their collective behavior, as opposed to bringing the patient into the health system. In addition, the use of mobile handheld devices has risen at a tremendous rate during the last few years and they have become an essential part of everyday life. Mobile phones o er a wide range of different services to their users including text and multimedia messages, Internet, audio, video, email applications and most recently TV services. The interactive TV provides a variety of applications for the viewers. The combination of interactive TV and the Smart Spaces could give innovative applications that are personalized, context-aware, ubiquitous and intelligent by enabling heterogeneous systems to collaborate each other by sharing information between them. There are many challenges in designing the frameworks and application development tools for rapid and easy development of these applications. The research work presented in this thesis addresses these issues. The original publications presented in the second part of this thesis propose architectures and methodologies for interactive and context-aware applications, and tools for the development of these applications. We demonstrated the suitability of our ontology-driven application development tools and rule basedapproach for the development of dynamic, context-aware ubiquitous iTV applications.
Resumo:
The capabilities and thus, design complexity of VLSI-based embedded systems have increased tremendously in recent years, riding the wave of Moore’s law. The time-to-market requirements are also shrinking, imposing challenges to the designers, which in turn, seek to adopt new design methods to increase their productivity. As an answer to these new pressures, modern day systems have moved towards on-chip multiprocessing technologies. New architectures have emerged in on-chip multiprocessing in order to utilize the tremendous advances of fabrication technology. Platform-based design is a possible solution in addressing these challenges. The principle behind the approach is to separate the functionality of an application from the organization and communication architecture of hardware platform at several levels of abstraction. The existing design methodologies pertaining to platform-based design approach don’t provide full automation at every level of the design processes, and sometimes, the co-design of platform-based systems lead to sub-optimal systems. In addition, the design productivity gap in multiprocessor systems remain a key challenge due to existing design methodologies. This thesis addresses the aforementioned challenges and discusses the creation of a development framework for a platform-based system design, in the context of the SegBus platform - a distributed communication architecture. This research aims to provide automated procedures for platform design and application mapping. Structural verification support is also featured thus ensuring correct-by-design platforms. The solution is based on a model-based process. Both the platform and the application are modeled using the Unified Modeling Language. This thesis develops a Domain Specific Language to support platform modeling based on a corresponding UML profile. Object Constraint Language constraints are used to support structurally correct platform construction. An emulator is thus introduced to allow as much as possible accurate performance estimation of the solution, at high abstraction levels. VHDL code is automatically generated, in the form of “snippets” to be employed in the arbiter modules of the platform, as required by the application. The resulting framework is applied in building an actual design solution for an MP3 stereo audio decoder application.
Resumo:
With the new age of Internet of Things (IoT), object of everyday such as mobile smart devices start to be equipped with cheap sensors and low energy wireless communication capability. Nowadays mobile smart devices (phones, tablets) have become an ubiquitous device with everyone having access to at least one device. There is an opportunity to build innovative applications and services by exploiting these devices’ untapped rechargeable energy, sensing and processing capabilities. In this thesis, we propose, develop, implement and evaluate LoadIoT a peer-to-peer load balancing scheme that can distribute tasks among plethora of mobile smart devices in the IoT world. We develop and demonstrate an android-based proof of concept load-balancing application. We also present a model of the system which is used to validate the efficiency of the load balancing approach under varying application scenarios. Load balancing concepts can be apply to IoT scenario linked to smart devices. It is able to reduce the traffic send to the Cloud and the energy consumption of the devices. The data acquired from the experimental outcomes enable us to determine the feasibility and cost-effectiveness of a load balanced P2P smart phone-based applications.