3 resultados para data pre-processing

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wind energy is one of the most promising and fast growing sector of energy production. Wind is ecologically friendly and relatively cheap energy resource available for development in practically all corners of the world (where only the wind blows). Today wind power gained broad development in the Scandinavian countries. Three important challenges concerning sustainable development, i.e. energy security, climate change and energy access make a compelling case for large-scale utilization of wind energy. In Finland, according to the climate and energy strategy, accepted in 2008, the total consumption of electricity generated by means of wind farms by 2020, should reach 6 - 7% of total consumption in the country [1]. The main challenges associated with wind energy production are harsh operational conditions that often accompany the turbine operation in the climatic conditions of the north and poor accessibility for maintenance and service. One of the major problems that require a solution is the icing of turbine structures. Icing reduces the performance of wind turbines, which in the conditions of a long cold period, can significantly affect the reliability of power supply. In order to predict and control power performance, the process of ice accretion has to be carefully tracked. There are two ways to detect icing – directly or indirectly. The first way applies to the special ice detection instruments. The second one is using indirect characteristics of turbine performance. One of such indirect methods for ice detection and power loss estimation has been proposed and used in this paper. The results were compared to the results directly gained from the ice sensors. The data used was measured in Muukko wind farm, southeast Finland during a project 'Wind power in cold climate and complex terrain'. The project was carried out in 9/2013 - 8/2015 with the partners Lappeenranta university of technology, Alstom renovables España S.L., TuuliMuukko, and TuuliSaimaa.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Solar Intensity X-ray and particle Spectrometer (SIXS) on board BepiColombo's Mercury Planetary Orbiter (MPO) will study solar energetic particles moving towards Mercury and solar X-rays on the dayside of Mercury. The SIXS instrument consists of two detector sub-systems; X-ray detector SIXS-X and particle detector SIXS-P. The SIXS-P subdetector will detect solar energetic electrons and protons in a broad energy range using a particle telescope approach with five outer Si detectors around a central CsI(Tl) scintillator. The measurements made by the SIXS instrument are necessary for other instruments on board the spacecraft. SIXS data will be used to study the Solar X-ray corona, solar flares, solar energetic particles, the Hermean magnetosphere, and solar eruptions. The SIXS-P detector was calibrated by comparing experimental measurement data from the instrument with Geant4 simulation data. Calibration curves were produced for the different side detectors and the core scintillator for electrons and protons, respectively. The side detector energy response was found to be linear for both electrons and protons. The core scintillator energy response to protons was found to be non-linear. The core scintillator calibration for electrons was omitted due to insufficient experimental data. The electron and proton acceptance of the SIXS-P detector was determined with Geant4 simulations. Electron and proton energy channels are clean in the main energy range of the instrument. At higher energies, protons and electrons produce non-ideal response in the energy channels. Due to the limited bandwidth of the spacecraft's telemetry, the particle measurements made by SIXS-P have to be pre-processed in the data processing unit of the SIXS instrument. A lookup table was created for the pre-processing of data with Geant4 simulations, and the ability of the lookup table to provide spectral information from a simulated electron event was analysed. The lookup table produces clean electron and proton channels and is able to separate protons and electrons. Based on a simulated solar energetic electron event, the incident electron spectrum cannot be determined from channel particle counts with a standard analysis method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to the sensitive nature of patient data, the secondary use of electronic health records (EHR) is restricted in scientific research and product development. Such restrictions pursue to preserve the privacy of respective patients by limiting the availability and variety of sensitive patient data. Current limitations do not correspond with the actual needs requested by the potential secondary users. In this thesis, the secondary use of Finnish and Swedish EHR data is explored for the purpose of enhancing the availability of such data for clinical research and product development. Involved EHR-related procedures and technologies are analysed to identify the issues limiting the secondary use of patient data. Successful secondary use of patient data increases the data value. To explore the identified circumstances, a case study of potential secondary users and use intentions regarding EHR data was carried out in Finland and Sweden. The data collection for the conducted case study was performed using semi-structured interviews. In total, 14 Finnish and Swedish experts representing scientific research, health management, and business were interviewed. The motivation for the corresponding interviews was to evaluate the protection of EHR data used for secondary purposes. The efficiency of implemented procedures and technologies was analysed in terms of data availability and privacy preserving. The results of the conducted case study show that the factors affecting EHR availability are divided to three categories: management of patient data, preservation of patients' privacy, and potential secondary users. Identified issues regarding data management included laborious and inconsistent data request procedures and the role and effect of external service providers. Based on the study findings, two secondary use approaches enabling the secondary use of EHR data are identified: data alteration and protected processing environment. Data alteration increases the availability of relevant EHR data, further decreasing the value of such data. Protected processing approach restricts the amount of potential users and use intentions while providing more valuable data content.