2 resultados para data generation
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Data mining, as a heatedly discussed term, has been studied in various fields. Its possibilities in refining the decision-making process, realizing potential patterns and creating valuable knowledge have won attention of scholars and practitioners. However, there are less studies intending to combine data mining and libraries where data generation occurs all the time. Therefore, this thesis plans to fill such a gap. Meanwhile, potential opportunities created by data mining are explored to enhance one of the most important elements of libraries: reference service. In order to thoroughly demonstrate the feasibility and applicability of data mining, literature is reviewed to establish a critical understanding of data mining in libraries and attain the current status of library reference service. The result of the literature review indicates that free online data resources other than data generated on social media are rarely considered to be applied in current library data mining mandates. Therefore, the result of the literature review motivates the presented study to utilize online free resources. Furthermore, the natural match between data mining and libraries is established. The natural match is explained by emphasizing the data richness reality and considering data mining as one kind of knowledge, an easy choice for libraries, and a wise method to overcome reference service challenges. The natural match, especially the aspect that data mining could be helpful for library reference service, lays the main theoretical foundation for the empirical work in this study. Turku Main Library was selected as the case to answer the research question: whether data mining is feasible and applicable for reference service improvement. In this case, the daily visit from 2009 to 2015 in Turku Main Library is considered as the resource for data mining. In addition, corresponding weather conditions are collected from Weather Underground, which is totally free online. Before officially being analyzed, the collected dataset is cleansed and preprocessed in order to ensure the quality of data mining. Multiple regression analysis is employed to mine the final dataset. Hourly visits are the independent variable and weather conditions, Discomfort Index and seven days in a week are dependent variables. In the end, four models in different seasons are established to predict visiting situations in each season. Patterns are realized in different seasons and implications are created based on the discovered patterns. In addition, library-climate points are generated by a clustering method, which simplifies the process for librarians using weather data to forecast library visiting situation. Then the data mining result is interpreted from the perspective of improving reference service. After this data mining work, the result of the case study is presented to librarians so as to collect professional opinions regarding the possibility of employing data mining to improve reference services. In the end, positive opinions are collected, which implies that it is feasible to utilizing data mining as a tool to enhance library reference service.
Resumo:
With the ever-growing amount of connected sensors (IoT), making sense of sensed data becomes even more important. Pervasive computing is a key enabler for sustainable solutions, prominent examples are smart energy systems and decision support systems. A key feature of pervasive systems is situation awareness which allows a system to thoroughly understand its environment. It is based on external interpretation of data and thus relies on expert knowledge. Due to the distinct nature of situations in different domains and applications, the development of situation aware applications remains a complex process. This thesis is concerned with a general framework for situation awareness which simplifies the development of applications. It is based on the Situation Theory Ontology to provide a foundation for situation modelling which allows knowledge reuse. Concepts of the Situation Theory are mapped to the Context Space Theory which is used for situation reasoning. Situation Spaces in the Context Space are automatically generated with the defined knowledge. For the acquisition of sensor data, the IoT standards O-MI/O-DF are integrated into the framework. These allow a peer-to-peer data exchange between data publisher and the proposed framework and thus a platform independent subscription to sensed data. The framework is then applied for a use case to reduce food waste. The use case validates the applicability of the framework and furthermore serves as a showcase for a pervasive system contributing to the sustainability goals. Leading institutions, e.g. the United Nations, stress the need for a more resource efficient society and acknowledge the capability of ICT systems. The use case scenario is based on a smart neighbourhood in which the system recommends the most efficient use of food items through situation awareness to reduce food waste at consumption stage.