2 resultados para cytogenetic adaptive response

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oral mucosa is a frequent site of primary herpes simplex virus type 1 (HSV-1) infection, whereas intraoral recurrent disease is very rare. Instead, reactivation from latency predominantly results in asymptomatic HSV shedding to saliva or recurrent labial herpes (RLH) with highly individual frequency. The current study aimed to elucidate the role of human oral innate and acquired immune mechanisms in modulation of HSV infection in orolabial region. Saliva was found to neutralize HSV-1, and to protect cells from infection independently of salivary antibodies. Neutralization capacity was higher in saliva from asymptomatic HSV-seropositive individuals compared to subjects with history of RLH or seronegative controls. Neutralization was at least partially associated with salivary lactoferrin content. Further, lactoferrin and peroxidase-generated hypothiocyanite were found to either neutralize HSV-1 or interfere with HSV-1 replication, whereas lysozyme displayed no anti-HSV-1 activity. Lactoferrin was also shown to modulate HSV-1 infection by inhibiting keratinocyte proliferation. RLH susceptibility was further found to be associated with Th2 biased cytokine responses against HSV, and a higher level of anti- HSV-IgG with Th2 polarization, indicating lack of efficiency of humoral response in the control of HSV disease. In a three-dimensional cell culture, keratinocytes were found to support both lytic and nonproductive infection, suggesting HSV persistence in epithelial cells, and further emphasizing the importance of peripheral immune control of HSV. These results suggest that certain innate salivary antimicrobial compounds and Th1 type cellular responses are critically important in protecting the host against HSV disease, implying possible applications in drug, vaccine and gene therapy design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forest inventories are used to estimate forest characteristics and the condition of forest for many different applications: operational tree logging for forest industry, forest health state estimation, carbon balance estimation, land-cover and land use analysis in order to avoid forest degradation etc. Recent inventory methods are strongly based on remote sensing data combined with field sample measurements, which are used to define estimates covering the whole area of interest. Remote sensing data from satellites, aerial photographs or aerial laser scannings are used, depending on the scale of inventory. To be applicable in operational use, forest inventory methods need to be easily adjusted to local conditions of the study area at hand. All the data handling and parameter tuning should be objective and automated as much as possible. The methods also need to be robust when applied to different forest types. Since there generally are no extensive direct physical models connecting the remote sensing data from different sources to the forest parameters that are estimated, mathematical estimation models are of "black-box" type, connecting the independent auxiliary data to dependent response data with linear or nonlinear arbitrary models. To avoid redundant complexity and over-fitting of the model, which is based on up to hundreds of possibly collinear variables extracted from the auxiliary data, variable selection is needed. To connect the auxiliary data to the inventory parameters that are estimated, field work must be performed. In larger study areas with dense forests, field work is expensive, and should therefore be minimized. To get cost-efficient inventories, field work could partly be replaced with information from formerly measured sites, databases. The work in this thesis is devoted to the development of automated, adaptive computation methods for aerial forest inventory. The mathematical model parameter definition steps are automated, and the cost-efficiency is improved by setting up a procedure that utilizes databases in the estimation of new area characteristics.