20 resultados para crystal morphology
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Työssä tutkittiin leijupetikiteyttimen toimivuutta sulfatiatsolikiteiden kasvunopeuksien mittaamisessa. Sulfatiatsoli on lääkeaine, jota käytetään antibioottina. Kirjallisuusosassa on käsitelty kiteytyksen perusteita sekä olosuhteiden vaikutuksia kidemorfologiaan. Koska kyseessä on lääkeaine, on työssä myös selvitetty tekijöitä, jotka vaikuttavat syntyvän kiteen polymorfimuotoon. Näitä ovat mm. siemenkiteen polymorfimuoto sekä käytetty liuotin. Kirjallisuusosassa on myös esitelty teollisia ja laboratoriomittakaavan leijupetikiteyttimiä. Kokeellisessa osassa on keskitytty testaamaan leijupetikiteyttimen toimintaa sekä etsimään sopivia olosuhteita kasvukokeiden suorittamiselle. Kokeissa tutkittiin ylikylläisyyden vaikutusta sulfatiatsolikiteen kasvuun. Kiteen kasvun seurantaan pyrittiin etsimään sopivia hiukkaskokoanalysaattoreita. Mittauksissa käytetyt laitteistot olivat PIA 4000 mod LUT on-line-videomikroskooppi ja laserdiffraktioon perustuva Coulter LS 130 off-line-partikkelikokoanalysaattori.
Resumo:
Diplomityön tarkoituksena oli tutkia nikkelin sulfidisaostuksessa syntyvien kiteiden morfologiaa ja siihen vaikuttavia parametreja. Syntyvien kiteiden kasvua ja morfologiaa tutkittiin kiteen muodostumisen ja kasvun teorioiden avulla. Saostuksen olosuhteet, kuten lämpötila, paine ja pH vaikuttavat muodostuvien kiteiden morfologiaan. Muilla parametreilla, kuten liuoksen ylikylläisyydellä, epäpuhtauksilla, lisäaineilla, sekoituksella ja reaktioajalla on myös suuri merkitys. Kokeiden avulla haluttiin liuoskoostumuksen, saostusolosuhteiden ja muiden komponenttien vaikutusta nikkelisulfidikiteiden morfologiaan. Kokeissa käytettiin kahta eri sulfidilähdettä: natriumvetysulfidia ja rikkivetyä. Puolipanoskokeissa nikkelipitoisuus oli 1,5 g/l, paine 101,3 kPa ja sekoitusnopeus 650 rpm. Saostuskokeet tehtiin natriumsulfaatti- 5 g/l ja ammoniumsulfaattiliuoksissa 300 g/l. Saostuskokeissa muuttujia olivat saostimen konsentraatio ja määrä, rauta- ja magne-siumepäpuhtaudet, lämpötila ja lisäaineet. Diplomityön kokeellisessa osassa morfologiaa tutkittiin suoraan valomikroskoopin ja pyyhkäisyelektronimikroskoopin (SEM) avulla. Morfologiaa tutkittiin myös epäsuorasti laskeutumisnopeuden, keskimääräisen partikkelikoon, ja ominaispinta-alamittausten avulla. Saostimen pitoisuuden vaikutukset partikkelimuotoon olivat pieniä, mutta vaikutukset ominaispinta-alaan ja partikkelikokoon olivat suuria. Natriumlauryylisul-faatti ja EDTA ohjasivat partikkelien rakennetta levymäisemmäksi, joka johti hitaaseen laskeutumisnopeuteen. Polyakryylihappo lisäaineena muuttaa partikkelien morfologiaa kuutiomaisemmaksi. Flokkulanttien ja raudan morfologiset vaikutukset olivat pieniä. Partikkelikoko ja omaispinta-ala pienenivät selvästi magnesiumpitoisuuden kasvaessa. Lämpötilan kasvattaminen lisäsi epäsäännöllisten kiteiden määrää ja muodostuneet kiteet olivat enemmän neulamaisia.
Resumo:
The steel industry produces, besides steel, also solid mineral by-products or slags, while it emits large quantities of carbon dioxide (CO2). Slags consist of various silicates and oxides which are formed in chemical reactions between the iron ore and the fluxing agents during the high temperature processing at the steel plant. Currently, these materials are recycled in the ironmaking processes, used as aggregates in construction, or landfilled as waste. The utilization rate of the steel slags can be increased by selectively extracting components from the mineral matrix. As an example, aqueous solutions of ammonium salts such as ammonium acetate, chloride and nitrate extract calcium quite selectively already at ambient temperature and pressure conditions. After the residual solids have been separated from the solution, calcium carbonate can be precipitated by feeding a CO2 flow through the solution. Precipitated calcium carbonate (PCC) is used in different applications as a filler material. Its largest consumer is the papermaking industry, which utilizes PCC because it enhances the optical properties of paper at a relatively low cost. Traditionally, PCC is manufactured from limestone, which is first calcined to calcium oxide, then slaked with water to calcium hydroxide and finally carbonated to PCC. This process emits large amounts of CO2, mainly because of the energy-intensive calcination step. This thesis presents research work on the scale-up of the above-mentioned ammonium salt based calcium extraction and carbonation method, named Slag2PCC. Extending the scope of the earlier studies, it is now shown that the parameters which mainly affect the calcium utilization efficiency are the solid-to-liquid ratio of steel slag and the ammonium salt solvent solution during extraction, the mean diameter of the slag particles, and the slag composition, especially the fractions of total calcium, silicon, vanadium and iron as well as the fraction of free calcium oxide. Regarding extraction kinetics, slag particle size, solid-to-liquid ratio and molar concentration of the solvent solution have the largest effect on the reaction rate. Solvent solution concentrations above 1 mol/L NH4Cl cause leaching of other elements besides calcium. Some of these such as iron and manganese result in solution coloring, which can be disadvantageous for the quality of the PCC product. Based on chemical composition analysis of the produced PCC samples, however, the product quality is mainly similar as in commercial products. Increasing the novelty of the work, other important parameters related to assessment of the PCC quality, such as particle size distribution and crystal morphology are studied as well. As in traditional PCC precipitation process, the ratio of calcium and carbonate ions controls the particle shape; a higher value for [Ca2+]/[CO32-] prefers precipitation of calcite polymorph, while vaterite forms when carbon species are present in excess. The third main polymorph, aragonite, is only formed at elevated temperatures, above 40-50 °C. In general, longer precipitation times cause transformation of vaterite to calcite or aragonite, but also result in particle agglomeration. The chemical equilibrium of ammonium and calcium ions and dissolved ammonia controlling the solution pH affects the particle sizes, too. Initial pH of 12-13 during the carbonation favors nonagglomerated particles with a diameter of 1 μm and smaller, while pH values of 9-10 generate more agglomerates of 10-20 μm. As a part of the research work, these findings are implemented in demonstrationscale experimental process setups. For the first time, the Slag2PCC technology is tested in scale of ~70 liters instead of laboratory scale only. Additionally, design of a setup of several hundreds of liters is discussed. For these purposes various process units such as inclined settlers and filters for solids separation, pumps and stirrers for material transfer and mixing as well as gas feeding equipment are dimensioned and developed. Overall emissions reduction of the current industrial processes and good product quality as the main targets, based on the performed partial life cycle assessment (LCA), it is most beneficial to utilize low concentration ammonium salt solutions for the Slag2PCC process. In this manner the post-treatment of the products does not require extensive use of washing and drying equipment, otherwise increasing the CO2 emissions of the process. The low solvent concentration Slag2PCC process causes negative CO2 emissions; thus, it can be seen as a carbon capture and utilization (CCU) method, which actually reduces the anthropogenic CO2 emissions compared to the alternative of not using the technology. Even if the amount of steel slag is too small for any substantial mitigation of global warming, the process can have both financial and environmental significance for individual steel manufacturers as a means to reduce the amounts of emitted CO2 and landfilled steel slag. Alternatively, it is possible to introduce the carbon dioxide directly into the mixture of steel slag and ammonium salt solution. The process would generate a 60-75% pure calcium carbonate mixture, the remaining 25-40% consisting of the residual steel slag. This calcium-rich material could be re-used in ironmaking as a fluxing agent instead of natural limestone. Even though this process option would require less process equipment compared to the Slag2PCC process, it still needs further studies regarding the practical usefulness of the products. Nevertheless, compared to several other CO2 emission reduction methods studied around the world, the within this thesis developed and studied processes have the advantage of existing markets for the produced materials, thus giving also a financial incentive for applying the technology in practice.
Resumo:
The growing pharmaceutical interest, among others, in the polymorphic composition of the emerging solid end-products from production processes has been traced to the need for attainment of high product purity. This is more so as the presence of different polymorphs may constitute physical impurity of the product. Hence, the need for optimization of the yield of desired product component(s) through controlled crystallization kinetics for instance. This study was carried out to investigate the impact of pulsed electric field (PEF) irradiation on the crystal morphology of glycine obtained by cooling crystallization (without seeding) from commercial glycine sample in distilled deionized water solution. In doing so, three different pulse frequencies (294, 950 and 145 Hz) and a case without PEF were studied at three cooling rates (5, 10 and 20 ºC/h). The crystal products obtained were analyzed for polymorphic composition by powder x-ray diffraction (PXRD) and Fourier transform infrared (FTIR) spectroscopy while the particles characterization was done on Morphologi G3. The results obtained from this study showed that pulsed electric field irradiation had significant impact on metastability of the aqueous solution as well as on the polymorphic composition of the end product. With increasing PEF frequency applied, nucleation started earlier and the γ-glycine polymorph content of the product crystals increased. These were found to have been aided by cooling rate, as the most significant effect was observed at 5 ºC/h. It was also discovered that PEF application had no measurable impact on the pH of the aqueous solution as well as the size distribution of the particles. Cooling on the contrary was believed to be responsible for the broadening of the particle size distribution with a downward shift of the lower limit of the raw material from about 100 μm to between 10 and 50 μm.
Resumo:
The aim of this thesis research work focused on the carbonate precipitation of magnesium using magnesium hydroxide Mg(OH)2 and carbon dioxide (CO2) gas at ambient temperature and pressure. The rate of dissolution of Mg(OH)2 and precipitation kinetics were investigated under different operating conditions. The conductivity and pH of the solution were inline monitored by a Consort meter and the solid samples gotten from the precipitation reaction were analysed by a laser diffraction analyzer Malvern Mastersizer to obtain particle size distributions (PSD) of crystal samples. Also the Mg2+ concentration profiles were determined from the liquid phase of the precipitate by ion chromatography (IC) analysis. Crystal morphology of the obtained precipitates were also investigated and discussed in this work. For the carbonation reaction of magnesium hydroxide in the present work, it was found that magnesium carbonate trihydrate (nesquehonite) was the main product and its formation occurred at a pH of around 7-8. The stirrer speed has a significant effect on the dissolution rate of Mg(OH)2. The highest obtained Mg2+ concentration level was 0.424 mol L-l for the 470 rpm and 0.387 mol L-1 for the 560 rpm which corresponded to the processing time of 45 mins and 40 mins respectively. The particle size distribution shows that the average particle size keeps increasing during the reaction as the CO2 is been fed to the system. The carbonation process is kinetically favored and simple as nesquehonite formation occurs in a very short time. It is a thermodynamically and chemically stable solid product, which allows for a long-term storage of CO2. Since the carbonation reaction is a complex system which includes dissolution of magnesium hydroxide particles, absorption of CO2, chemical reaction and crystallization, the dissolution of magnesium hydroxide was studied in hydrochloric acid (HCl) solvent with and without nitrogen (N2) inert gas. It was found on the dissolution part that the impeller speed had effect on the dissolution rate. The higher the impeller speed the higher the pH of the solution, although for the highest speed of 650rpm it was not the case. Therefore, it was concluded that the optimum speed of the stirrer was 560rpm. The influence of inert gas N2 on the dissolution rate of Mg(OH)2 particles could be seen based on measured pH, electric conductivity and Mg2+ concentration curves.
Resumo:
Crystallization is employed in different industrial processes. The method and operation can differ depending on the nature of the substances involved. The aim of this study is to examine the effect of various operating conditions on the crystal properties in a chemical engineering design window with a focus on ultrasound assisted cooling crystallization. Batch to batch variations, minimal manufacturing steps and faster production times are factors which continuous crystallization seeks to resolve. Continuous processes scale-up is considered straightforward compared to batch processes owing to increase of processing time in the specific reactor. In cooling crystallization process, ultrasound can be used to control the crystal properties. Different model compounds were used to define the suitable process parameters for the modular crystallizer using equal operating conditions in each module. A final temperature of 20oC was employed in all experiments while the operating conditions differed. The studied process parameters and configuration of the crystallizer were manipulated to achieve a continuous operation without crystal clogging along the crystallization path. The results from the continuous experiment were compared with the batch crystallization results and analysed using the Malvern Morphologi G3 instrument to determine the crystal morphology and CSD. The modular crystallizer was operated successfully with three different residence times. At optimal process conditions, a longer residence time gives smaller crystals and narrower CSD. Based on the findings, at a constant initial solution concentration, the residence time had clear influence on crystal properties. The equal supersaturation criterion in each module offered better results compared to other cooling profiles. The combination of continuous crystallization and ultrasound has large potential to overcome clogging, obtain reproducible and narrow CSD, specific crystal morphologies and uniform particle sizes, and exclusion of milling stages in comparison to batch processes.
Resumo:
Crystal growth is an essential phase in crystallization kinetics. The rate of crystal growth provides significant information for the design and control of crystallization processes; nevertheless, obtaining accurate growth rate data is still challenging due to a number of factors that prevail in crystal growth. In industrial crystallization, crystals are generally grown from multi-componentand multi-particle solutions under complicated hydrodynamic conditions; thus, it is crucial to increase the general understanding of the growth kinetics in these systems. The aim of this work is to develop a model of the crystal growth rate from solution. An extensive literature review of crystal growth focuses on themodelling of growth kinetics and thermodynamics, and new measuring techniques that have been introduced in the field of crystallization. The growth of a singlecrystal is investigated in binary and ternary systems. The binary system consists of potassium dihydrogen phosphate (KDP, crystallizing solute) and water (solvent), and the ternary system includes KDP, water and an organic admixture. The studied admixtures, urea, ethanol and 1-propanol, are employed at relatively highconcentrations (of up to 5.0 molal). The influence of the admixtures on the solution thermodynamics is studied using the Pitzer activity coefficient model. Theprediction method of the ternary solubility in the studied systems is introduced and verified. The growth rate of the KDP (101) face in the studied systems aremeasured in the growth cell as a function of supersaturation, the admixture concentration, the solution velocity over a crystal and temperature. In addition, the surface morphology of the KDP (101) face is studied using ex situ atomic force microscopy (AFM). The crystal growth rate in the ternary systems is modelled on the basis of the two-step growth model that contains the Maxwell-Stefan (MS) equations and a surface-reaction model. This model is used together with measuredcrystal growth rate data to develop a new method for the evaluation of the model parameters. The validation of the model is justified with experiments. The crystal growth rate in an imperfectly mixed suspension crystallizer is investigatedusing computational fluid dynamics (CFD). A solid-liquid suspension flow that includes multi-sized particles is described by the multi-fluid model as well as by a standard k-epsilon turbulence model and an interface momentum transfer model. The local crystal growth rate is determined from calculated flow information in a diffusion-controlled crystal growth regime. The calculated results are evaluated experimentally.
Resumo:
The objective of the thesis was to develop methods to manufacture and control calcium carbonate crystal nucleation and growth in precipitation process. The work consists of experimental part and literature part that addresses theory of nucleation, crystallization and precipitation. In the experimental part calcium carbonate was precipitated using carbonization reaction. Precipitation was carried out in presence of known morphology controlling agents (anionic polymers and sodium silicate) and by using different operation conditions. Formed material was characterized using SEM images, and its thermal stability was assessed. This work demonstrates that carbon dioxide feeding rate and concentrations of calcium hydroxide and additives can be used to control size, shape and amount of precipitating calcium carbonate.
Variation in floral morphology and reproductive success in Petrocoptis grandiflora (Caryophyllaceae)
Resumo:
Selostus: Tasoskannerin ja digitaalisen kuva-analyysimenetelmän kalibrointi juurten morfologian kvantifioimiseksi
Resumo:
The article describes some concrete problems that were encountered when writing a two-level model of Mari morphology. Mari is an agglutinative Finno-Ugric language spoken in Russia by about 600 000 people. The work was begun in the 1980s on the basis of K. Koskenniemi’s Two-Level Morphology (1983), but in the latest stage R. Beesley’s and L. Karttunen’s Finite State Morphology (2003) was used. Many of the problems described in the article concern the inexplicitness of the rules in Mari grammars and the lack of information about the exact distribution of some suffixes, e.g. enclitics. The Mari grammars usually give complete paradigms for a few unproblematic verb stems, whereas the difficult or unclear forms of certain verbs are only superficially discussed. Another example of phenomena that are poorly described in grammars is the way suffixes with an initial sibilant combine to stems ending in a sibilant. The help of informants and searches from electronic corpora were used to overcome such difficulties in the development of the two-level model of Mari. The variation of the order of plural markers, case suffixes and possessive suffixes is a typical feature of Mari. The morphotactic rules constructed for Mari declensional forms tend to be recursive and their productivity must be limited by some technical device, such as filters. In the present model, certain plural markers were treated like nouns. The positional and functional versatility of the possessive suffixes can be regarded as the most challenging phenomenon in attempts to formalize the Mari morphology. Cyrillic orthography, which was used in the model, also caused problems. For instance, a Cyrillic letter may represent a sequence of two sounds, the first being part of the word stem while the other belongs to a suffix. In some cases, letters for voiced consonants are also generalized to represent voiceless consonants. Such orthographical conventions distance a morphological model based on orthography from the actual (morpho)phonological processes in the language.