12 resultados para cryptographic pairing computation, elliptic curve cryptography
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The basic goal of this study is to extend old and propose new ways to generate knapsack sets suitable for use in public key cryptography. The knapsack problem and its cryptographic use are reviewed in the introductory chapter. Terminology is based on common cryptographic vocabulary. For example, solving the knapsack problem (which is here a subset sum problem) is termed decipherment. Chapter 1 also reviews the most famous knapsack cryptosystem, the Merkle Hellman system. It is based on a superincreasing knapsack and uses modular multiplication as a trapdoor transformation. The insecurity caused by these two properties exemplifies the two general categories of attacks against knapsack systems. These categories provide the motivation for Chapters 2 and 4. Chapter 2 discusses the density of a knapsack and the dangers of having a low density. Chapter 3 interrupts for a while the more abstract treatment by showing examples of small injective knapsacks and extrapolating conjectures on some characteristics of knapsacks of larger size, especially their density and number. The most common trapdoor technique, modular multiplication, is likely to cause insecurity, but as argued in Chapter 4, it is difficult to find any other simple trapdoor techniques. This discussion also provides a basis for the introduction of various categories of non injectivity in Chapter 5. Besides general ideas of non injectivity of knapsack systems, Chapter 5 introduces and evaluates several ways to construct such systems, most notably the "exceptional blocks" in superincreasing knapsacks and the usage of "too small" a modulus in the modular multiplication as a trapdoor technique. The author believes that non injectivity is the most promising direction for development of knapsack cryptosystema. Chapter 6 modifies two well known knapsack schemes, the Merkle Hellman multiplicative trapdoor knapsack and the Graham Shamir knapsack. The main interest is in aspects other than non injectivity, although that is also exploited. In the end of the chapter, constructions proposed by Desmedt et. al. are presented to serve as a comparison for the developments of the subsequent three chapters. Chapter 7 provides a general framework for the iterative construction of injective knapsacks from smaller knapsacks, together with a simple example, the "three elements" system. In Chapters 8 and 9 the general framework is put into practice in two different ways. Modularly injective small knapsacks are used in Chapter 9 to construct a large knapsack, which is called the congruential knapsack. The addends of a subset sum can be found by decrementing the sum iteratively by using each of the small knapsacks and their moduli in turn. The construction is also generalized to the non injective case, which can lead to especially good results in the density, without complicating the deciphering process too much. Chapter 9 presents three related ways to realize the general framework of Chapter 7. The main idea is to join iteratively small knapsacks, each element of which would satisfy the superincreasing condition. As a whole, none of these systems need become superincreasing, though the development of density is not better than that. The new knapsack systems are injective but they can be deciphered with the same searching method as the non injective knapsacks with the "exceptional blocks" in Chapter 5. The final Chapter 10 first reviews the Chor Rivest knapsack system, which has withstood all cryptanalytic attacks. A couple of modifications to the use of this system are presented in order to further increase the security or make the construction easier. The latter goal is attempted by reducing the size of the Chor Rivest knapsack embedded in the modified system. '
Resumo:
Tässä diplomityössä tutkitaan dispariteettikartan laskennan tehostamista interpoloimalla. Kolmiomittausta käyttämällä stereokuvasta muodostetaan ensin harva dispariteettikartta, jonka jälkeen koko kuvan kattava dispariteettikartta muodostetaan interpoloimalla. Kolmiomittausta varten täytyy tietää samaa reaalimaailman pistettä vastaavat kuvapisteet molemmissa kameroissa. Huolimatta siitä, että vastaavien pisteiden hakualue voidaan pienentää kahdesta ulottuvuudesta yhteen ulottuvuuteen käyttämällä esimerkiksi epipolaarista geometriaa, on laskennallisesti tehokkaampaa määrittää osa dispariteetikartasta interpoloimalla, kuin etsiä vastaavia kuvapisteitä stereokuvista. Myöskin johtuen stereonäköjärjestelmän kameroiden välisestä etäisyydestä, kaikki kuvien pisteet eivät löydy toisesta kuvasta. Näin ollen on mahdotonta määrittää koko kuvan kattavaa dispariteettikartaa pelkästään vastaavista pisteistä. Vastaavien pisteiden etsimiseen tässä työssä käytetään dynaamista ohjelmointia sekä korrelaatiomenetelmää. Reaalimaailman pinnat ovat yleisesti ottaen jatkuvia, joten geometrisessä mielessä on perusteltua approksimoida kuvien esittämiä pintoja interpoloimalla. On myöskin olemassa tieteellistä näyttöä, jonkamukaan ihmisen stereonäkö interpoloi objektien pintoja.
Resumo:
The past few decades have seen a considerable increase in the number of parallel and distributed systems. With the development of more complex applications, the need for more powerful systems has emerged and various parallel and distributed environments have been designed and implemented. Each of the environments, including hardware and software, has unique strengths and weaknesses. There is no single parallel environment that can be identified as the best environment for all applications with respect to hardware and software properties. The main goal of this thesis is to provide a novel way of performing data-parallel computation in parallel and distributed environments by utilizing the best characteristics of difference aspects of parallel computing. For the purpose of this thesis, three aspects of parallel computing were identified and studied. First, three parallel environments (shared memory, distributed memory, and a network of workstations) are evaluated to quantify theirsuitability for different parallel applications. Due to the parallel and distributed nature of the environments, networks connecting the processors in these environments were investigated with respect to their performance characteristics. Second, scheduling algorithms are studied in order to make them more efficient and effective. A concept of application-specific information scheduling is introduced. The application- specific information is data about the workload extractedfrom an application, which is provided to a scheduling algorithm. Three scheduling algorithms are enhanced to utilize the application-specific information to further refine their scheduling properties. A more accurate description of the workload is especially important in cases where the workunits are heterogeneous and the parallel environment is heterogeneous and/or non-dedicated. The results obtained show that the additional information regarding the workload has a positive impact on the performance of applications. Third, a programming paradigm for networks of symmetric multiprocessor (SMP) workstations is introduced. The MPIT programming paradigm incorporates the Message Passing Interface (MPI) with threads to provide a methodology to write parallel applications that efficiently utilize the available resources and minimize the overhead. The MPIT allows for communication and computation to overlap by deploying a dedicated thread for communication. Furthermore, the programming paradigm implements an application-specific scheduling algorithm. The scheduling algorithm is executed by the communication thread. Thus, the scheduling does not affect the execution of the parallel application. Performance results achieved from the MPIT show that considerable improvements over conventional MPI applications are achieved.
Resumo:
Arvokasta tai luottamuksellista tietoa käsittelevien palveluiden, kuten pankki- ja kauppa-palveluiden, tarjoaminen julkisessa Internet-verkossa on synnyttänyt tarpeen vahvalle todennukselle, eli käyttäjien tunnistuksen varmistamiselle. Vahvassa todennuksessa käytetään salaus-menetelmien tarjoamia keinoja todennus-tapahtuman tieto-turvan parantamiseen heikkoihin todennusmenetelmiin nähden. Todennusta käyttäjätunnus-salasana-yhdistelmällä voidaan pitää heikkona menetelmänä. Julkisen avaimen järjestelmän varmenteita voidaan käyttää WWW-ympäristössä toimivissa palveluissa yhteyden osapuolten todentamiseen. Tässä työssä suunniteltiin vahva käyttäjän todennus julkisen avaimen järjestelmällä WWW-ympäristössä tarjottavalle palvelulle ja toteutettiin palvelun tarjoavan sovelluksen komponentiksi soveltuva yksinkertainen varmentaja OpenSSL-salaustyökalupaketin avulla. Työssä käydään läpi myös salauksen perusteet, julkisen avaimen järjestelmä ja esitellään olemassaolevia varmentajatoteutuksia ja mahdollisia tieto-turva-uhkia Vahva todennus tulee suunnitella siten, että palvelun käyttäjä ymmärtää, mikä tarkoitus hänen toimillaan on ja miten ne edistävät tietoturvaa. Internet-palveluissa käyttäjän vahva todennus ei ole yleistynyt huonon käytettävyyden vuoksi.
Resumo:
We expose the ubiquitous interaction between an information screen and its’ viewers mobile devices, highlights the communication vulnerabilities, suggest mitigation strategies and finally implement these strategies to secure the communication. The screen infers information preferences’ of viewers within its vicinity transparently from their mobile devices over Bluetooth. Backend processing then retrieves up-to-date versions of preferred information from content providers. Retrieved content such as sporting news, weather forecasts, advertisements, stock markets and aviation schedules, are systematically displayed on the screen. To maximise users’ benefit, experience and acceptance, the service is provided with no user interaction at the screen and securely upholding preferences privacy and viewers anonymity. Compelled by the personal nature of mobile devices, their contents privacy, preferences confidentiality, and vulnerabilities imposed by screen, the service’s security is fortified. Fortification is predominantly through efficient cryptographic algorithms inspired by elliptic curves cryptosystems, access control and anonymity mechanisms. These mechanisms are demonstrated to attain set objectives within reasonable performance.
Resumo:
This PhD thesis in Mathematics belongs to the field of Geometric Function Theory. The thesis consists of four original papers. The topic studied deals with quasiconformal mappings and their distortion theory in Euclidean n-dimensional spaces. This theory has its roots in the pioneering papers of F. W. Gehring and J. Väisälä published in the early 1960’s and it has been studied by many mathematicians thereafter. In the first paper we refine the known bounds for the so-called Mori constant and also estimate the distortion in the hyperbolic metric. The second paper deals with radial functions which are simple examples of quasiconformal mappings. These radial functions lead us to the study of the so-called p-angular distance which has been studied recently e.g. by L. Maligranda and S. Dragomir. In the third paper we study a class of functions of a real variable studied by P. Lindqvist in an influential paper. This leads one to study parametrized analogues of classical trigonometric and hyperbolic functions which for the parameter value p = 2 coincide with the classical functions. Gaussian hypergeometric functions have an important role in the study of these special functions. Several new inequalities and identities involving p-analogues of these functions are also given. In the fourth paper we study the generalized complete elliptic integrals, modular functions and some related functions. We find the upper and lower bounds of these functions, and those bounds are given in a simple form. This theory has a long history which goes back two centuries and includes names such as A. M. Legendre, C. Jacobi, C. F. Gauss. Modular functions also occur in the study of quasiconformal mappings. Conformal invariants, such as the modulus of a curve family, are often applied in quasiconformal mapping theory. The invariants can be sometimes expressed in terms of special conformal mappings. This fact explains why special functions often occur in this theory.
Resumo:
Diplomityön tarkoituksena on optimoida asiakkaiden sähkölaskun laskeminen hajautetun laskennan avulla. Älykkäiden etäluettavien energiamittareiden tullessa jokaiseen kotitalouteen, energiayhtiöt velvoitetaan laskemaan asiakkaiden sähkölaskut tuntiperusteiseen mittaustietoon perustuen. Kasvava tiedonmäärä lisää myös tarvittavien laskutehtävien määrää. Työssä arvioidaan vaihtoehtoja hajautetun laskennan toteuttamiseksi ja luodaan tarkempi katsaus pilvilaskennan mahdollisuuksiin. Lisäksi ajettiin simulaatioita, joiden avulla arvioitiin rinnakkaislaskennan ja peräkkäislaskennan eroja. Sähkölaskujen oikeinlaskemisen tueksi kehitettiin mittauspuu-algoritmi.
Resumo:
The quasiclassical approach was applied to the investigation of the vortex properties in the ironbased superconductors. The special attention was paid to manifestation of the nonlocal effects of the vortex core structure. The main results are as follows: (i) The effects of the pairing symmetries (s+ and s₊₊) on the cutoff parameter of field distribution, ξh, in stoichiometric (like LiFeAs) and nonstoichiometric (like doped BaFe₂As₂) iron pnictides have been investigated using Eilenberger quasiclassical equations. Magnetic field, temperature and impurity scattering dependences of ξh have been calculated. Two opposite behavior have been discovered. The ξh /ξc2 ratio is less in s+ symmetry when intraband impurity scattering (Γ₀) is much larger than one and much larger than interband impurity scattering (Γπ), i.e. in nonstoichiometric iron pnictides. Opposite, the value ξh /ξc2 is higher in s+ case and the field dependent curve is shifted upward from the "clean" case (Γ₀ = Γπ = 0) for stoichiometric iron pnictides (Γ₀ = Γπ ≪ 1). (ii) Eilenberger approach to the cutoff parameter, ξh, of the field distribution in the mixed state of high
Resumo:
The superconducting gap is a basic character of a superconductor. While the cuprates and conventional phonon-mediated superconductors are characterized by distinct d- and s-wave pairing symmetries with nodal and nodeless gap distributions respectively, the superconducting gap distributions in iron-based superconductors are rather diversified. While nodeless gap distributions have been directly observed in Ba1–xKxFe2As2, BaFe2–xCoxAs2, LiFeAs, KxFe2–ySe2, and FeTe1–xSex, the signatures of a nodal superconducting gap have been reported in LaOFeP, LiFeP, FeSe, KFe2As2, BaFe2–xRuxAs2, and BaFe2(As1–xPx)2. Due to the multiplicity of the Fermi surface in these compounds s± and d pairing states can be both nodeless and nodal. A nontrivial orbital structure of the order parameter, in particular the presence of the gap nodes, leads to effects in which the disorder is much richer in dx2–y2-wave superconductors than in conventional materials. In contrast to the s-wave case, the Anderson theorem does not work, and nonmagnetic impurities exhibit a strong pair-breaking influence. In addition, a finite concentration of disorder produces a nonzero density of quasiparticle states at zero energy, which results in a considerable modification of the thermodynamic and transport properties at low temperatures. The influence of order parameter symmetry on the vortex core structure in iron-based pnictide and chalcogenide superconductors has been investigated in the framework of quasiclassical Eilenberger equations. The main results of the thesis are as follows. The vortex core characteristics, such as, cutoff parameter, ξh, and core size, ξ2, determined as the distance at which density of the vortex supercurrent reaches its maximum, are calculated in wide temperature, impurity scattering rate, and magnetic field ranges. The cutoff parameter, ξh(B; T; Г), determines the form factor of the flux-line lattice, which can be obtained in _SR, NMR, and SANS experiments. A comparison among the applied pairing symmetries is done. In contrast to s-wave systems, in dx2–y2-wave superconductors, ξh/ξc2 always increases with the scattering rate Г. Field dependence of the cutoff parameter affects strongly on the second moment of the magnetic field distributions, resulting in a significant difference with nonlocal London theory. It is found that normalized ξ2/ξc2(B/Bc2) dependence is increasing with pair-breaking impurity scattering (interband scattering for s±-wave and intraband impurity scattering for d-wave superconductors). Here, ξc2 is the Ginzburg-Landau coherence length determined from the upper critical field Bc2 = Φ0/2πξ2 c2, where Φ0 is a flux quantum. Two types of ξ2/ξc2 magnetic field dependences are obtained for s± superconductors. It has a minimum at low temperatures and small impurity scattering transforming in monotonously decreasing function at strong scattering and high temperatures. The second kind of this dependence has been also found for d-wave superconductors at intermediate and high temperatures. In contrast, impurity scattering results in decreasing of ξ2/ξc2(B/Bc2) dependence in s++ superconductors. A reasonable agreement between calculated ξh/ξc2 values and those obtained experimentally in nonstoichiometric BaFe2–xCoxAs2 (μSR) and stoichiometric LiFeAs (SANS) was found. The values of ξh/ξc2 are much less than one in case of the first compound and much more than one for the other compound. This is explained by different influence of two factors: the value of impurity scattering rate and pairing symmetry.
Resumo:
With the shift towards many-core computer architectures, dataflow programming has been proposed as one potential solution for producing software that scales to a varying number of processor cores. Programming for parallel architectures is considered difficult as the current popular programming languages are inherently sequential and introducing parallelism is typically up to the programmer. Dataflow, however, is inherently parallel, describing an application as a directed graph, where nodes represent calculations and edges represent a data dependency in form of a queue. These queues are the only allowed communication between the nodes, making the dependencies between the nodes explicit and thereby also the parallelism. Once a node have the su cient inputs available, the node can, independently of any other node, perform calculations, consume inputs, and produce outputs. Data ow models have existed for several decades and have become popular for describing signal processing applications as the graph representation is a very natural representation within this eld. Digital lters are typically described with boxes and arrows also in textbooks. Data ow is also becoming more interesting in other domains, and in principle, any application working on an information stream ts the dataflow paradigm. Such applications are, among others, network protocols, cryptography, and multimedia applications. As an example, the MPEG group standardized a dataflow language called RVC-CAL to be use within reconfigurable video coding. Describing a video coder as a data ow network instead of with conventional programming languages, makes the coder more readable as it describes how the video dataflows through the different coding tools. While dataflow provides an intuitive representation for many applications, it also introduces some new problems that need to be solved in order for data ow to be more widely used. The explicit parallelism of a dataflow program is descriptive and enables an improved utilization of available processing units, however, the independent nodes also implies that some kind of scheduling is required. The need for efficient scheduling becomes even more evident when the number of nodes is larger than the number of processing units and several nodes are running concurrently on one processor core. There exist several data ow models of computation, with different trade-offs between expressiveness and analyzability. These vary from rather restricted but statically schedulable, with minimal scheduling overhead, to dynamic where each ring requires a ring rule to evaluated. The model used in this work, namely RVC-CAL, is a very expressive language, and in the general case it requires dynamic scheduling, however, the strong encapsulation of dataflow nodes enables analysis and the scheduling overhead can be reduced by using quasi-static, or piecewise static, scheduling techniques. The scheduling problem is concerned with nding the few scheduling decisions that must be run-time, while most decisions are pre-calculated. The result is then an, as small as possible, set of static schedules that are dynamically scheduled. To identify these dynamic decisions and to find the concrete schedules, this thesis shows how quasi-static scheduling can be represented as a model checking problem. This involves identifying the relevant information to generate a minimal but complete model to be used for model checking. The model must describe everything that may affect scheduling of the application while omitting everything else in order to avoid state space explosion. This kind of simplification is necessary to make the state space analysis feasible. For the model checker to nd the actual schedules, a set of scheduling strategies are de ned which are able to produce quasi-static schedulers for a wide range of applications. The results of this work show that actor composition with quasi-static scheduling can be used to transform data ow programs to t many different computer architecture with different type and number of cores. This in turn, enables dataflow to provide a more platform independent representation as one application can be fitted to a specific processor architecture without changing the actual program representation. Instead, the program representation is in the context of design space exploration optimized by the development tools to fit the target platform. This work focuses on representing the dataflow scheduling problem as a model checking problem and is implemented as part of a compiler infrastructure. The thesis also presents experimental results as evidence of the usefulness of the approach.
Resumo:
In this work, the feasibility of the floating-gate technology in analog computing platforms in a scaled down general-purpose CMOS technology is considered. When the technology is scaled down the performance of analog circuits tends to get worse because the process parameters are optimized for digital transistors and the scaling involves the reduction of supply voltages. Generally, the challenge in analog circuit design is that all salient design metrics such as power, area, bandwidth and accuracy are interrelated. Furthermore, poor flexibility, i.e. lack of reconfigurability, the reuse of IP etc., can be considered the most severe weakness of analog hardware. On this account, digital calibration schemes are often required for improved performance or yield enhancement, whereas high flexibility/reconfigurability can not be easily achieved. Here, it is discussed whether it is possible to work around these obstacles by using floating-gate transistors (FGTs), and analyze problems associated with the practical implementation. FGT technology is attractive because it is electrically programmable and also features a charge-based built-in non-volatile memory. Apart from being ideal for canceling the circuit non-idealities due to process variations, the FGTs can also be used as computational or adaptive elements in analog circuits. The nominal gate oxide thickness in the deep sub-micron (DSM) processes is too thin to support robust charge retention and consequently the FGT becomes leaky. In principle, non-leaky FGTs can be implemented in a scaled down process without any special masks by using “double”-oxide transistors intended for providing devices that operate with higher supply voltages than general purpose devices. However, in practice the technology scaling poses several challenges which are addressed in this thesis. To provide a sufficiently wide-ranging survey, six prototype chips with varying complexity were implemented in four different DSM process nodes and investigated from this perspective. The focus is on non-leaky FGTs, but the presented autozeroing floating-gate amplifier (AFGA) demonstrates that leaky FGTs may also find a use. The simplest test structures contain only a few transistors, whereas the most complex experimental chip is an implementation of a spiking neural network (SNN) which comprises thousands of active and passive devices. More precisely, it is a fully connected (256 FGT synapses) two-layer spiking neural network (SNN), where the adaptive properties of FGT are taken advantage of. A compact realization of Spike Timing Dependent Plasticity (STDP) within the SNN is one of the key contributions of this thesis. Finally, the considerations in this thesis extend beyond CMOS to emerging nanodevices. To this end, one promising emerging nanoscale circuit element - memristor - is reviewed and its applicability for analog processing is considered. Furthermore, it is discussed how the FGT technology can be used to prototype computation paradigms compatible with these emerging two-terminal nanoscale devices in a mature and widely available CMOS technology.