3 resultados para cesarean section (C-section)

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cesarean section (CS) is the most common major surgery performed on women worldwide. CS can save the life of the mother or the fetus, but is associated with the typical complications of any major surgery: hemorrhage, infection, venous thromboembolism and complications of anesthesia, sometimes leading to maternal death. Recently there have been several reports from well resourced countries on increased severe maternal morbidity and even mortality. Increased rates of CS, obesity and older mothers may explain this rise. The aim of this thesis is to study the rates and risk factors of short term maternal complications associated with CS. Also, we compared maternal morbidity by mode of delivery and over time. The complication rates were assessed in a prospective study involving 2496 CS performed in the 12 largest delivery units in Finland in 2005. The rates of severe complications were studied by mode of delivery in a register-based study comparing national cohorts in 1997 and 2002. The impact of several risk factors on severe maternal morbidity by mode of delivery was studied in a register-based study of all singleton deliveries in 2007-2011. In the prospective study, 27% of the women who underwent CS had one or more intraoperative or postoperative complications during their hospital stay, and 10% had a severe complication. In the register-based study the incidence of life-threatening maternal complications was 7.6 in 1000 deliveries. The incidence was lowest for vaginal delivery (VD), followed by instrumental VD and elective CS, and highest in emergency CS. An attempt of VD, including the risks associated with emergency CS, seems to be the safest mode of delivery, even for most high-risk women.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To predict the capacity of the structure or the point which is followed by instability, calculation of the critical crack size is important. Structures usually contain several cracks but not necessarily all of these cracks lead to failure or reach the critical size. So, defining the harmful cracks or the crack size which is the most leading one to failure provides criteria for structure’s capacity at elevated temperature. The scope of this thesis was to calculate fracture parameters like stress intensity factor, the J integral and plastic and ultimate capacity of the structure to estimate critical crack size for this specific structure. Several three dimensional (3D) simulations using finite element method by Ansys program and boundary element method by Frank 3D program were carried out to calculate fracture parameters and results with the aid of laboratory tests (loaddisplacement curve, the J resistance curve and yield or ultimate stress) leaded to extract critical size of the crack. Two types of the fracture which is usually affected by temperature, Elastic and Elasti-Plastic fractures were simulated by performing several linear elastic and nonlinear elastic analyses. Geometry details of the weldment; flank angle and toe radius were also studied independently to estimate the location of crack initiation and simulate stress field in early stages of crack extension in structure. In this work also overview of the structure’s capacity in room temperature (20 ºC) was studied. Comparison of the results in different temperature (20 ºC and -40 ºC) provides a threshold of the structure’s behavior within the defined range.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Growing demand for stainless steel construction materials has increased the popularity of substitutive materials for austenitic stainless steels. The lean duplex grades have taken their place in building of structures exposed to corrosive environments. Since the duplex grades are relatively new materials, the current codes and norms do not fully cover the newest duplex grades. The joints tested in this thesis were designed and studied according to Eurocode 3, even though all the materials are not yet accepted to the standards. The main objective in this thesis was to determine the differences of the used materials in behaviour under loading at low temperatures. Tests in which the deformation and strength properties of the joints were determined were done at the temperature of -46°C, which is the requirement of temperature for structures designed according to Norsok standards. Results show that replacing the austenitic grade with the lean duplex grade is acceptable.