10 resultados para cement-in-cement
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The main aim of this study was to develop the project management framework model which would serve as the new model to follow for upcoming projects at the Lappeenranta cement plant. The other goal was to execute the SNCR (selective non catalytic reduction) project successfully so that the nitrogen oxides emissions are below the stated emission limit when the new emission limit comes into effect beginning in July, 2008. Nitrogen oxides, project management aspects, SNCR and the invested system are explained in the theory part. In the practical part of the study, the SNCR project in the Lappeenranta cement plant was executed and the findings were documented. In order to reach the aim of this study, a framework of project management was made. The framework is based on the executed SNCR project, previous projects in the cement plant and on the available literature relating to the subject matter. The developed project turned out to be successful.
Resumo:
Cement industry significantly associated with high greenhouse gas (GHG) emissions. Considering the environmental impact, particularly global warming potential, it is important to reduce these emissions to air. The aim of the study is to investigate the mitigation possibility of GHG emissions in Ethiopian cement industry. Life cycle assessment (LCA) method used to identify and quantify GHG emissions during one ton of ordinary portland cement (OPC) production. Three mitigation scenarios: alternative fuel use, clinker substitution and thermal energy efficiency were applied on a representative gate-to-gate flow model developed with GaBi 6 software. The results of the study indicate that clinker substitution and alternative fuel use play a great role for GHG emissions mitigation with affordable cost. Applying most energy efficient kiln technology, which in turn reduces the amount of thermal energy use, has the least GHG emissions reduction intensity and high implementation cost comparing to the other scenarios. It was found that the cumulative GHG emissions mitigation potential along with other selected mitigation scenarios can be at least 48.9% per ton of cement production.
Resumo:
The construction material sector, as a capital intensive industry, is highly vulnerable to rapid fluctuations in the economic cycles. In Finland this was witnessed especially during the late 2000s, as in 2007 and 2008 the demand for several construction materials exceeded their supply and right after this, in 2009 the demand collapsed fast as a result of an international recession. These factors brought about the need to study the future trends of the market place of the commissioning company, Finnsementti Oy. As reliable short term market forecasts for the sector are difficult to compose, the study concentrates primarily in examining and identifying the trends that are likely to affect the Finnish cement industry, and as an extension, the concrete industry in a frame of 10 to 15 years. The study’s scope comprehends also the examination of the domestic construction sector, as it represents the end user industry of both cement and concrete. These motives for the study produce the research problem, which is to conduct a trend analysis for cement based building in the Finnish market area in the 2020s. The theoretical frame for composing a trend analysis in the case of this study is twofold. This is due to the fact that both, the macro and micro environments of the examined industries are studied. The main methods used are the PESTE-model (macro) and Porter’s five forces model (micro). The study applies a qualitative approach and the data is gathered by interviewing a group of experts from the cement, concrete and construction industries. The result of the paper is an overall trend analysis for the Finnish cement based building sector, which is based on ‘sub trend analyses’ concerning four identified sub-sectors of the Finnish construction industry. The results are a combination of findings from these sub-sectors and the analyzed data that deals with the studied sector’s macro and micro environment. The conclusions provide an overall picture of the examined sectors’ potential future as a whole and by defined sub-sectors of the construction industry. The recognition of future trends in different areas of the construction industry can be applied as a means for an industry actor’s decision making and in estimating the types of construction that are likely to grow or decline. Finally, based on the analyzed data and conclusions, the commissioning company is provided with a brief SWOT analysis, that provides additional tools for decision making and planning processes regarding the future.
Resumo:
I takt med den ekonomiska tillväxten har CO2-utsläppen till atmosfären ständigt ökat, och utan kraftiga åtgärder kommer de att fortsätta att öka i allt snabbare takt. Konsekvenserna av en påtagligt förhöjd atmosfärisk CO2-halt är fortfarande osäkra (men eventuellt katastrofala) och fenomenet går under namnet global uppvärmning eller klimatförändring. CCS från engelskans ”carbon dioxide capture and storage” framstår som ett alternativ för att bekämpa de ständigt ökande CO2-utsläppen. Ett av de mer intressanta, och för Finlands del ända CCS-alternativet, baserar sig på naturens egna sätt att begränsa atmosfärisk CO2, nämligen vittring. Naturlig vittring, som förenklat innefattar nedbrytningen av sten/berg (även känd som erosion) och de därpå följande reaktionerna med CO2-mättat regnvatten. Slutresultatet är en utfällning av fasta mineraler som nu bundit CO2 i form av kalcium- och magnesiumkarbonat. Kalciumkarbonat är även bättre känt som kalksten, d.v.s. CO2 blir bundet i sten. Det gäller dock att snabba upp denna process, som i naturen är ytterst långsam, på ett ekonomiskt och miljömässigt hållbart sätt. Hittills har ett antal metoder för att påskynda naturlig vittring, eller med andra ord öka CO2-upptagningsförmågan av olika mineraler föreslagits. De mera etablerade uttrycken (lånade från engelskan) talar om mineralkarbonatisering och CO2-mineralisering. Till skillnad från många andra CO2-mineraliseringsalternativ är det alternativ som behandlas i denna avhandling i hög grad baserat på möjligheten att utnyttja den värme som frigörs vid karbonatisering. I teorin är det möjligt att föreställa sig en mineraliseringsprocess som inte kräver extern energi, men tillsvidare har man dock inte lyckats uppnå detta mål. Den process som presenteras i denna avhandling går ut på att man utvinner magnesium ur i naturen vanligt förekommande magnesiumrika mineraler, konverterar det till magnesiumhydroxid och därefter karbonatiserar det till magnesiumkarbonat. I rätta förhållanden kan magnesiumhydroxid reagera med CO2 mycket snabbt och i nuläget har processen potential att minska CO2-utsläppen från industri där spillvärme finns till förfogande (t.ex. cement- och stålindustrin). Fortsatt forskning är dock ett måste för att kunna påverka CO2-utsläppen i en globalt signifikant skala.
Resumo:
Operation of pulp and paper mills generates waste including wastewater treatment sludge and deinking sludge. Both sludge types are generated in large amounts and are mainly disposed of in landfills in the Leningrad Region resulting in environmental degradation. The thesis was aimed at seeking new sustainable ways of sludge utilization. Two paper mills operating in the Leningrad Region and landfilling their sludge were identified: “SCA Hygiene Products Russia” and “Knauf”. The former generates 150 t/day of deinking sludge, the latter – 145 t/day of secondary sludge. Chemical analyses of deinking sludge were performed to assess applicability of sludge in construction materials production processes. Higher heating value on dry basis of both sludge types was determined to evaluate energy potential of sludge generated in the Leningrad Region. Total energy output from sludge incineration was calculated. Deinking sludge could be utilized in the production process of “LSR-Cement” or “Slantsy Cement Plant Cesla” factories, and “Pobeda” and “Nikolsky” brick mills without exceeding current sludge management costs.
Resumo:
Waste incineration is becoming increasingly widespread method of waste disposal in China. Incineration plants mostly use grate and circular fluidized bed (CFB) technology. Waste combustion in cement production is also beginning to gradually increase. However, Chinese waste composition is causing problems for the energy utilization. Mechanical waste pre-treatment optimizes the combustion process and facilitates the energy recovery. The objective of this study is to identify how Western waste pre-treatment manufacturer could operate in Chinese markets. Chinese waste management industry is reviewed via PESTEL analysis. The current state and future predictions of grate and CFB incineration as well as cement manufacturing are monitored. Grate combustion, which requires lesser waste pre-treatment, is becoming more common at the expense of CFB incineration in China. The most promising future for waste treatment is in cement production industry. Waste treatment equipment manufacturer should try to create pilot projects with biggest cement producers with a view of growing co-operation in the future.
Resumo:
Different nitrogen oxide removal technologies for rotary lime kiln are studied in this thesis, the main focus being in commercial technologies. Post-combustion methods are investigated in more detail as potential possible NOx removal with combustion methods in rotary lime kiln is more limited or primary methods are already in use. However, secondary methods as NOx scrubber, SNCR or SCR technologies are not listed as the Best Available Technologies defined by European Union. BAT technologies for NOx removal in lime kiln are (1) Optimised combustion and combustion control, (2) Good mixing of fuel and air, (3) Low-NOx burner and (4) Fuel selection/low-N fuel. SNCR method is the most suitable technique for NOx removal in lime kiln when NOx removal from 50 % to 70 % is required in case primary methods are already in use or cannot be applied. In higher removal cases ammonia slip is an issue in SNCR. By using SCR better NOx reduction can be achieved but issues with catalyst materials are expected to arise because of the dust and sulphur dioxide which leads to catalyst poison formation in lower flue gas temperatures. NOx scrubbing has potential when simultaneous NOx and SO2 removal is required. The challenge is that NO cannot be scrubbed directly, but once it is oxidized to NO2 or further scrubbing can be performed as the solubility of NO2 is higher. Commercial installations have not been made regarding SNCR, SCR or NOx scrubbing regarding rotary lime kiln. For SNCR and SCR the closest references come from cement industry.
Karta öfver Degerhamn och trakten deromkring med husbyggnader tillhörige Ölands Cement Aktiebolag
Resumo:
Kartta kuuluu A. E. Nordenskiöldin kokoelmaan
Resumo:
Finland, other Nordic countries and European Union aim to decarbonize their energy production by 2050. Decarbonization requires large scale implementation of non-emission energy sources, i.e. renewable energy and nuclear power. Stochastic renewable energy sources present a challenge to balance the supply and demand for energy. Energy storages, non-emissions fuels in mobility and industrial processes are required whenever electrification is not possible. Neo-Carbon project studies the decarbonizing the energy production and the role of synthetic gas in it. This thesis studies the industrial processes in steel production, oil refining, cement manufacturing and glass manufacturing, where natural gas is already used or fuel switch to SNG is possible. The technical potential for fuel switching is assessed, and economic potential is necessary after this. All studied processes have potential for fuel switching, but total decarbonization of steel production, oil refining requires implementation of other zero-emission technologies.
Resumo:
The present world energy production is heavily relying on the combustion of solid fuels like coals, peat, biomass, municipal solid waste, whereas the share of renewable fuels is anticipated to increase in the future to mitigate climate change. In Finland, peat and wood are widely used for energy production. In any case, the combustion of solid fuels results in generation of several types of thermal conversion residues, such as bottom ash, fly ash, and boiler slag. The predominant residue type is determined by the incineration technology applied, while its composition is primarily relevant to the composition of fuels combusted. An extensive research has been conducted on technical suitability of ash for multiple recycling methods. Most of attention was drawn to the recycling of the coal combustion residues, as coal is the primary solid fuel consumed globally. The recycling methods of coal residues include utilization in a cement industry, in concrete manufacturing, and mine backfilling, to name few. Biomass combustion residues were also studied to some extent with forest fertilization, road construction, and road stabilization being the predominant utilization options. Lastly, residues form municipal solid waste incineration attracted more attention recently following the growing number of waste incineration plants globally. The recycling methods of waste incineration residues are the most limited due to its hazardous nature and varying composition, and include, among others, landfill construction, road construction, mine backfilling. In the study, environmental and economic aspects of multiple recycling options of thermal conversion residues generated within a case-study area were studied. The case-study area was South-East Finland. The environmental analysis was performed using an internationally recognized methodology — life cycle assessment. Economic assessment was conducted applying a widely used methodology — cost-benefit analysis. Finally, the results of the analyses were combined to enable easier comparison of the recycling methods. The recycling methods included the use of ash in forest fertilization, road construction, road stabilization, and landfill construction. Ash landfilling was set as a baseline scenario. Quantitative data about the amounts of ash generated and its composition was obtained from companies, their environmental reports, technical reports and other previously published literature. Overall, the amount of ash in the case-study area was 101 700 t. However, the data about 58 400 t of fly ash and 35 100 t of bottom ash and boiler slag were included in the study due to lack of data about leaching of heavy metals in some cases. The recycling methods were modelled according to the scientific studies published previously. Overall, the results of the study indicated that ash utilization for fertilization and neutralization of 17 600 ha of forest was the most economically beneficial method, which resulted in the net present value increase by 58% compared to ash landfilling. Regarding the environmental impact, the use of ash in the construction of 11 km of roads was the most attractive method with decreased environmental impact of 13% compared to ash landfilling. The least preferred method was the use of ash for landfill construction since it only enabled 11% increase of net present value, while inducing additional 1% of negative impact on the environment. Therefore, a following recycling route was proposed in the study. Where possible and legally acceptable, recycle fly and bottom ash for forest fertilization, which has strictest requirements out of all studied methods. If the quality of fly ash is not suitable for forest fertilization, then it should be utilized, first, in paved road construction, second, in road stabilization. Bottom ash not suitable for forest fertilization, as well as boiler slag, should be used in landfill construction. Landfilling should only be practiced when recycling by either of the methods is not possible due to legal requirements or there is not enough demand on the market. Current demand on ash and possible changes in the future were assessed in the study. Currently, the area of forest fertilized in the case-study are is only 451 ha, whereas about 17 600 ha of forest could be fertilized with ash generated in the region. Provided that the average forest fertilizing values in Finland are higher and the area treated with fellings is about 40 000 ha, the amount of ash utilized in forest fertilization could be increased. Regarding road construction, no new projects launched by the Center of Economic Development, Transport and the Environment in the case-study area were identified. A potential application can be found in the construction of private roads. However, no centralized data about such projects is available. The use of ash in stabilization of forest roads is not expected to increased in the future with a current downwards trend in the length of forest roads built. Finally, the use of ash in landfill construction is not a promising option due to the reducing number of landfills in operation in Finland.