2 resultados para cell strain L929

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matrix metalloproteinase-13 (MMP-13) is a potent proteolytic enzyme, whose expression has been previously associated with fetal bone development and postnatal bone remodeling and with adult gingival wound healing. MMP-13 is also known to be involved in the growth and invasion of various cancers including squamous cell carcinoma (SCC) of the skin. The aim of this study was to further elucidate the function and regulation of MMP-13 in wound repair and cancer. In this study, it was shown that fetal skin fibroblasts express MMP-13 in response to transforming growth factor-β in a p38 MAP kinase dependent manner. In addition, MMP-13 was found to be expressed in vivo by wound fibroblasts in human fetal skin grafted on SCID mice. Adenovirally delivered expression of MMP-13 enhanced collagen matrix contraction by fibroblasts in vitro in association with altered cytoskeletal structure, enhanced proliferation and survival. These results indicate that MMP-13 is involved in cell-mediated collagen matrix remodeling and suggest a role for MMP-13 in superior matrix remodeling and scarless healing of fetal skin wounds. Using an MMP-13 deficient mouse strain, it was shown that MMP-13 is essential for the normal development of experimental granulation tissue in mice. MMP-13 was implicated in the regulation of myofibroblast function and angiogenesis and the expression of genes involved in cellular proliferation and movement, immune response, angiogenesis and proteolysis. Finally, epidermal mitogen, keratinocyte growth factor (KGF) was shown to suppress the malignant properties of skin SCC cells by downregulating the expression of several target genes with potential cancer promoting properties, including MMP-13, and by reducing SCC cell invasion. These results provide evidence that MMP-13 potently regulates cell viability, myofibroblast function and angiogenesis associated with wound healing and cancer. In addition, fibroblasts expressing MMP-13 show high collagen reorganization capacity. Moreover, the results suggest that KGF mediates the anti-cancer effects on skin SCC

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyanobacteria are unicellular, non-nitrogen-fixing prokaryotes, which perform photosynthesis similarly as higher plants. The cyanobacterium Synechocystis sp. strain PCC 6803 is used as a model organism in photosynthesis research. My research described herein aims at understanding the function of the photosynthetic machinery and how it responds to changes in the environment. Detailed knowledge of the regulation of photosynthesis in cyanobacteria can be utilized for biotechnological purposes, for example in the harnessing of solar energy for biofuel production. In photosynthesis, iron participates in electron transfer. Here, we focused on iron transport in Synechocystis sp. strain PCC 6803 and particularly on the environmental regulation of the genes encoding the FutA2BC ferric iron transporter, which belongs to the ABC transporter family. A homology model built for the ATP-binding subunit FutC indicates that it has a functional ATPbinding site as well as conserved interactions with the channel-forming subunit FutB in the transporter complex. Polyamines are important for the cell proliferation, differentiation and apoptosis in prokaryotic and eukaryotic cells. In plants, polyamines have special roles in stress response and in plant survival. The polyamine metabolism in cyanobacteria in response to environmental stress is of interest in research on stress tolerance of higher plants. In this thesis, the potd gene encoding an polyamine transporter subunit from Synechocystis sp. strain PCC 6803 was characterized for the first time. A homology model built for PotD protein indicated that it has capability of binding polyamines, with the preference for spermidine. Furthermore, in order to investigate the structural features of the substrate specificity, polyamines were docked into the binding site. Spermidine was positioned very similarly in Synechocystis PotD as in the template structure and had most favorable interactions of the docked polyamines. Based on the homology model, experimental work was conducted, which confirmed the binding preference. Flavodiiron proteins (Flv) are enzymes, which protect the cell against toxicity of oxygen and/or nitric oxide by reduction. In this thesis, we present a novel type of photoprotection mechanism in cyanobacteria by the heterodimer of Flv2/Flv4. The constructed homology model of Flv2/Flv4 suggests a functional heterodimer capable of rapid electron transfer. The unknown protein sll0218, encoded by the flv2-flv4 operon, is assumed to facilitate the interaction of the Flv2/Flv4 heterodimer and energy transfer between the phycobilisome and PSII. Flv2/Flv4 provides an alternative electron transfer pathway and functions as an electron sink in PSII electron transfer.