18 resultados para cell adhesion molecules

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell migration and adhesion to the extracellular matrix (ECM) are crucial in many biological and pathological processes such as morphogenesis, tissue repair, inflammatory responses, survival, and cancer. Cell-matrix adhesion is mediated by the integrin family of transmembrane receptors, which not only anchor cells to their surroundings, but also transmit bidirectional signalling at the cell surface and couple the ECM to the cytoskeleton. Another group of adhesion receptors are the syndecan proteoglycans, which engage the ECM and possess signalling activity in response to a variety of ligands. Cell migration is a complex process that requires spatial and temporal coordination of adhesion, cell contractility, intracellular traffic of integrins, and matrix turnover by matrix metalloproteinases (MMPs). Thus, integrins and syndecans, as well as MMPs, play essential roles in cancer cell migration and invasion. The understanding of the cooperation of syndecans and integrins was broadened in this thesis study. The results reveal that syndecan-1 functions in concert with 21 integrin in cell adhesion to collagen, whereas syndecan-4 is essential in 21 integrin-mediated matrix contraction. Finally, oncogenic K-Ras was shown to regulate 21 integrin, membrane-type 1 MMP, and syndecan-1 and -4 expression and their cooperation in cell invasion. Epithelial-mesenchymal transition (EMT) is fundamental during embryogenesis and organ development. Activation of EMT processes, including the upregulation of mesenchymal intermediate filament protein vimentin, has also been implicated in the acquisition of a malignant phenotype by epithelial cancer cells. Members of the protein kinase C (PKC) superfamily are involved in cell migration and various integrindependent cellular functions. One aim of this work was to shed light on the role of vimentin in the regulation of integrin traffic and cell motility. In addition, the mechanism by which vimentin participates in EMT was investigated. The results show that integrin recycling and motility are dependent on the PKC–mediated phosphorylation of vimentin. In addition, vimentin was found to be a positive regulator of EMT and regulate the expression of several migratory genes. Specifically, vimentin governs the expression of receptor tyrosine kinase Axl, which is implicated in tumour growth and metastasis. Taken together, the findings described in this thesis reveal novel aspects of the complex interplay between distinct cellular components: integrins, syndecans, and the vimentin cytoskeleton, which all contribute to the regulation of human cancer cell adhesion, migration, and invasion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation studies the signaling events mediated by the extracellular superoxide dismutase (SOD3). SOD3 is an antioxidant enzyme which converts the harmful superoxide into hydrogen peroxide. Overproduction of these reactive oxygen species (ROS) in the cellular environment as a result of tissue injury or impaired antioxidant defense system has detrimental effects on tissue integrity and function. However, especially hydrogen peroxide is also an important signaling agent. Ischemic injury in muscle causes acute oxidative stress and inflammation. We investigated the ability of SOD3 to attenuate ischemia induced inflammation and to promote recovery of skeletal muscle tissue. We found that SOD3 can downregulate the expression of several inflammatory cytokines and cell adhesion molecules thus preventing the accumulation of oxidant-producing inflammatory cells. Secondly, SOD3 was able to promote long-term activation of the mitogenic Erk pathway, but increased only briefly the activity of pro-survival Akt pathway at an early stage of ischemic inflammation, thus reducing apoptosis. SOD3 is a prominent antioxidant in the thyroid gland where oxidative stress is constantly present. We investigated the role of SOD3 in normal thyroid follicular cells and the changes in its expression in various hyperproliferative disorders. We first showed that SOD3 is TSH-responsive which indicated its participation in thyroid function. Its principal function seems to be in follicular cell proliferation since knockdown cells were deficient in proliferation. Additionally, it was overexpressed in goiter tissue. However, SOD3 was consistently downregulated in thyroid cancer cell lines and tissues. In conclusion, SOD3 is involved in tissue maintenance, cell proliferation and inflammatory cell migration. Its mechanisms of action are the activation of known proliferation/survival pathways, inhibition of apoptosis and regulation of adhesion molecule expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integrin family of transmembrane receptors are important for cell-matrix adhesion and signal transmission to the interior of the cell. Integrins are essential for many physiological processes and defective integrin function can consequently result in a multitude of diseases, including cancer. Integrin traffic is needed for completion of cytokinesis and cell division failure has been proposed to be an early event in the formation of chromosomally aberrant and transformed cells. Impaired integrin traffic and changes in integrin expression are known to promote invasion of malignant cells. However, the direct roles of impaired integrin traffic in tumorigenesis and increased integrin expression in oncogene driven invasion have not been examined. In this study we have investigated both of these aspects. We found that cells with reduced integrin endocytosis become binucleate and subsequently aneuploid. These aneuploid cells display characteristics of transformed cells; they are anchorage-independent, resistant to apoptosis and invasive in vitro. Importantly, subcutaneous injection of the aneuploid cells into athymic nude mice produced highly malignant tumors. Through gene expression profiling and analysis of integrin-triggered signaling pathways we have identified several molecules involved in the malignancy of these cells, including Src kinase and the transcription factor Twist2. Thus, even though chromosomal aberrations are associated with reduced cell fitness, we show that aneuploidy can facilitate tumor evolution and selection of transformed cells. Invasion and metastasis are the primary reason for deaths caused by cancer and the molecular pathways responsible for invasion are therefore attractive targets in cancer therapy. In addition to integrins, another major family of adhesion receptors are the proteoglycans syndecans. Integrins and syndecans are known to signal in a synergistic manner in controlling cell adhesion on 2D matrixes. Here we explored the role of syndecans as α2β1 integrin co-receptors in 3D collagen. We show that in breast cancer cells harbouring mutant K-Ras, increased levels of integrins, their co-receptors syndecans and matrix cleaving proteases are necessary for the invasive phenotype of these cells. Together, these findings increase our knowledge of the complicated changes that occur during tumorigenesis and the pathways that control the ability of cancer cells to invade and metastasize.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Protein tyrosine phosphorylation controls a wide array of cellular responses such as growth, migration, proliferation, differentiation, metabolism and cytoskeletal organisation. Tyrosine phosphorylation is a dynamic process involving the competing activities of protein tyrosine kinases and protein tyrosine phosphatases. The protein tyrosine kinases are further divided into non-receptor- and receptor tyrosine kinases. The latter are transmembrane glycoproteins activated by the binding of specific ligands, mostly growth factors, to their extracellular domain, transmitting different signals to the cell. Growth factor receptors such as the epidermal growth factor receptor, vascular endothelial growth factor receptor 2 and platelet-derived growth factor receptor β, belong to the receptor tyrosine kinases, the signalling of which is often disturbed in various diseases, including cancer. This has led to the development of receptor tyrosine kinase antagonists for use as anti-cancer drugs. As the receptor tyrosine kinases, also the protein tyrosine phosphatases can be divided into receptor- and non-receptor types. The protein tyrosine phosphatases have attained much less attention than the receptor tyrosine kinases partly because they were identified later. However, accumulating evidence shows that the protein tyrosine phosphatases have important roles as specific and active regulators of tyrosine phosphorylation in cells and of physiological processes. Consequently, the protein tyrosine phosphatases are receiving arising interest as novel drug targets. The aim of this work was to elucidate the negative regulation of receptor tyrosine kinases by one non-receptor protein tyrosine phosphatase, T-cell protein tyrosine phosphatase TCPTP. The results show that TCPTP activated by cell adhesion receptor integrin α1 functions as a negative regulator of the epidermal growth factor receptor. It was also found that TCPTP affects vascular endothelial growth factor receptor 2 signalling and angiogenesis. Lastly, a High-throughput screen with 64,280 compounds was performed to identify novel TCPTP activators, resulting in identification of one small molecule compound capable of exerting similar effects on TCPTP signalling as integrin α1. This compound is shown to downregulate signalling of epidermal growth factor receptor and platelet-derived growth factor receptor β, as well as to inhibit cell proliferation and angiogenesis. Our results suggest that a suitable small-molecule TCPTP activator could be utilized in the development of novel anti-cancer drugs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this study was to characterize the cellular mechanisms leading to the beneficial effect of anti-oxidative gene therapy and pro-angiogenic stem cell therapy in acute peripheral ischemia. Post-ischemic events aim to re-establish tissue blood perfusion, to clear cellular debris, and to regenerate lost tissue by differentiation of satellite cells into myoblasts. Although leukocytes have an essential role in clearing cellular debris and promoting angiogenesis, they also contribute to tissue injury through excessive ROS production. First, we investigated the therapeutic properties of extracellular superoxide dismutase (SOD3) gene transfer. SOD3 was shown to reduce oxidative stress, to normalize glucose metabolism, and to enhance cell proliferation in the ischemic muscle. Analysis of the mitogenic Ras-Erk1/2 pathway showed SOD3 mediated induction offering a plausible explanation for enhanced cell proliferation. In addition, SOD3 reduced NF-κB activity by enhancing IκBα expression thus leading to reduced expression of inflammatory cytokines and adhesion molecules with consequent reduction in macrophage infiltration. Secondly, we sought to determine the fate and the effect of locally transplanted mesenchymal stem/stromal cells (MSCs) in acute ischemia. We showed that a vast majority of the transplanted cells are cleared from the injury site within 24 hours after local transplantation. Despite rapid clearance, transplantation was able to temporarily promote angiogenesis and cell proliferation in the muscle. Lack of graft-derived growth factor expression suggests other than secretory function to mediate this observed effect. In conclusion, both SOD3 and MSCs could be utilized to alleviate peripheral ischemia induced tissue injury. We have described a previously unidentified growth regulatory role for SOD3, and suggest a novel mechanism whereby transplanted MSCs enhance the reparative potential of the recipient tissue through physical contacts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The drug discovery process is facing new challenges in the evaluation process of the lead compounds as the number of new compounds synthesized is increasing. The potentiality of test compounds is most frequently assayed through the binding of the test compound to the target molecule or receptor, or measuring functional secondary effects caused by the test compound in the target model cells, tissues or organism. Modern homogeneous high-throughput-screening (HTS) assays for purified estrogen receptors (ER) utilize various luminescence based detection methods. Fluorescence polarization (FP) is a standard method for ER ligand binding assay. It was used to demonstrate the performance of two-photon excitation of fluorescence (TPFE) vs. the conventional one-photon excitation method. As result, the TPFE method showed improved dynamics and was found to be comparable with the conventional method. It also held potential for efficient miniaturization. Other luminescence based ER assays utilize energy transfer from a long-lifetime luminescent label e.g. lanthanide chelates (Eu, Tb) to a prompt luminescent label, the signal being read in a time-resolved mode. As an alternative to this method, a new single-label (Eu) time-resolved detection method was developed, based on the quenching of the label by a soluble quencher molecule when displaced from the receptor to the solution phase by an unlabeled competing ligand. The new method was paralleled with the standard FP method. It was shown to yield comparable results with the FP method and found to hold a significantly higher signal-tobackground ratio than FP. Cell-based functional assays for determining the extent of cell surface adhesion molecule (CAM) expression combined with microscopy analysis of the target molecules would provide improved information content, compared to an expression level assay alone. In this work, immune response was simulated by exposing endothelial cells to cytokine stimulation and the resulting increase in the level of adhesion molecule expression was analyzed on fixed cells by means of immunocytochemistry utilizing specific long-lifetime luminophore labeled antibodies against chosen adhesion molecules. Results showed that the method was capable of use in amulti-parametric assay for protein expression levels of several CAMs simultaneously, combined with analysis of the cellular localization of the chosen adhesion molecules through time-resolved luminescence microscopy inspection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is crucial that lymphocytes patrol the body against foreign intruders and that leukocytes invade inflamed tissues to ameliorate the infection or injury. The adhesion molecules in leukocytes and endothelial cells play an essential role in the immune response by directing the traffic of leukocytes. However, the same molecules that guide leukocyte traffic under physiological conditions are also involved in pathological situations, when an overly excessive or harmful inflammatory response leads to tissue destruction and organ dysfunction or tumor growth. Vascular adhesion protein-1 (VAP-1) and Common lymphatic endothelial and vascular endothelial receptor-1 (CLEVER-1) are endothelial molecules that participate in the adhesion of leukocytes to the endothelia. This study was designed to elucidate, using different inflammation models, the role of VAP-1 and CLEVER-1 in leukocyte migration to the inflamed tissue, and to evaluate the use of antibodies against these molecules as an anti-adhesive therapy. Also, the role of CLEVER-1 during tumorigenesis was studied. Blocking the function of VAP-1 with antibodies significantly decreased the accumulation of leukocytes in the inflamed tissue. Targeting CLEVER-1 prevented cell migration via lymphatic vessels, as well as leukocyte traffic during inflammation. Following the anti-CLEVER-1 antibody treatment the number of immune regulating leukocytes in tumors was reduced, which led to a decrease in tumor growth. However, the normal immune response towards immunization or bacterial infection was not compromised. Thus, VAP-1 and CLEVER-1 are both potential targets for antiinflammatory therapies for preventing the harmful accumulation of leukocytes in inflamed areas. Targeting CLEVER-1 may also inhibit tumor growth by reducing immunosuppressive leukocytes in tumors

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Integrins are heterodimeric, signaling transmembrane adhesion receptors that connect the intracellular actin microfilaments to the extracellular matrix composed of collagens and other matrix molecules. Bidirectional signaling is mediated via drastic conformational changes in integrins. These changes also occur in the integrin αI domains, which are responsible for ligand binding by collagen receptor and leukocyte specific integrins. Like intact integrins, soluble αI domains exist in the closed, low affinity form and in the open, high affinity form, and so it is possible to use isolated αI domains to study the factors and mechanisms involved in integrin activation/deactivation. Integrins are found in all mammalian tissues and cells, where they play crucial roles in growth, migration, defense mechanisms and apoptosis. Integrins are involved in many human diseases, such as inflammatory, cardiovascular and metastatic diseases, and so plenty of effort has been invested into developing integrin specific drugs. Humans have 24 different integrins, four of which are collagen receptor (α1β1, α2β1, α10β1, α11β1) and five leukocyte specific integrins (αLβ2, αMβ2, αXβ2, αDβ2, αEβ7). These two integrin groups are quite unselective having both primary and secondary ligands. This work presents the first systematic studies performed on these integrin groups to find out how integrin activation affects ligand binding and selectivity. These kinds of studies are important not only for understanding the partially overlapping functions of integrins, but also for drug development. In general, our results indicated that selectivity in ligand recognition is greatly reduced upon integrin activation. Interestingly, in some cases the ligand binding properties of integrins have been shown to be cell type specific. The reason for this is not known, but our observations suggest that cell types with a higher integrin activation state have lower ligand selectivity, and vice versa. Furthermore, we solved the three-dimensional structure for the activated form of the collagen receptor α1I domain. This structure revealed a novel intermediate conformation not previously seen with any other integrin αI domain. This is the first 3D structure for an activated collagen receptor αI domain without ligand. Based on the differences between the open and closed conformation of the αI domain we set structural criteria for a search for effective collagen receptor drugs. By docking a large number of molecules into the closed conformation of the α2I domain we discovered two polyketides, which best fulfilled the set structural criteria, and by cell adhesion studies we showed them to be specific inhibitors of the collagen receptor integrins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Metastasis is the main cause of death among cancer patients. In order to initiate the metastatic cascade cancer cells have to undergo epithelial-to-mesenchymal transition (EMT). In EMT epithelial cells lose their cell-cell and cell-extracellular matrix (ECM) contacts and become more motile. The expression of the transcription factor Slug and of the mesenchymal intermediate filament vimentin is induced during EMT. Vimentin is often overexpressed in malignant epithelial cancers but the functional role of vimentin remains incompletely understood. In addition, kinases such as AKT and ERK are known to be involved in the regulation of EMT and cancer cell motility but the mechanisms underlining their functions are often unclear. Integrins are heterodimeric receptors that attach cells to the surrounding tissue and participate in regulating cell migration and invasion. Changes in integrin activity are linked to increased cell motility and further cancer metastasis. The aim for my PhD studies was to investigate the role of cellular signalling pathways and vimentin in the regulation of cancer cell motility and EMT. Our results revealed that in prostate cancer the downregulation of AKT1 and AKT2, but not AKT3, induces activation of cell surface 1-integrins leading to enhanced cell adhesion, migration and invasion. In addition, our findings demonstrated a reciprocal regulatory interaction between vimentin and ERK2 facilitating ERK-mediated phosphorylation of Slug at serine-87 (S87) in breast cancer. Surprisingly, Slug S87 phosphorylation is dispensable for E-cadherin repression but essential for the induction of vimentin and Axl expression in early onset of EMT. Our findings reveal previously unknown mechanistic information of how prostate and breast cancer cell motility and disease progression is regulated

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The extravasation of leukocytes from the blood stream into the tissues is a prerequisite for adequate immune surveillance and immune reaction. The leukocyte movement from the bloodstream into the tissues is mediated by molecular bonds. The bonds are formed between adhesion molecules on endothelial cells and their counterparts expressed on leukocytes. Vascular adhesion protein-1 (VAP-1) is an endothelial adhesion molecule mediating leukocyte interactions with endothelium. It is also an enzyme having semicarbazide sensitive amine oxidase (SSAO) activity. The SSAOactivity catalyses deamination of primary amines into corresponding aldehyde and during the enzymatic reaction hydrogen peroxide and ammonia are produced. The aim of this study was to investigate the relationship between the adhesive and enzymatic activities of VAP-1. The role of VAP-1 in leukocyte traffic was studied in vivo under normal and pathological conditions in VAP-1 deficient mice. The results from in vitro flow-based assays indicated that VAP-1 uses both SSAOactivity and its adhesive epitope to bind leukocytes, and both are perquisites for VAP-1 mediated adhesion. Furthermore, in vivo results demonstrated that leukocyte trafficking was impaired in vivo by deleting VAP-1 or inhibiting SSAO-activity. There was impairment in lymphocyte recirculation as well as leukocyte accumulation into the inflamed area. Moreover, the VAP-1 deficient mice did not show generalized defects in antimicrobial responses, whereas significant reduction in tumor progression and neovascularization was observed. These results indicate that VAP-1 could be used as a target in anti-adhesive therapies either by blocking its adhesive epitope with antibodies or by inhibiting its SSAO-activity using inhibitors. Moreover, targeting of VAP-1 may provide a new way of inhibiting neovascularization in tumors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Integrins are heterodimeric adhesion receptors mediating adhesion to extracellular matrix proteins and to other cells. Integrins are important in embryonic development, structural integrity of connective tissue, blood thrombus formation, and immune defense system. Integrins are transmembrane proteins whose ligand binding capacity (activity) is regulated by large conformational changes. Extracellular ligand binding or intracellular effector binding to integrin cytoplasmic face regulate integrin activity. Integrins are thus able to mediate bi-directional signaling. Integrin function is also regulated by intracellular location. Integrins are constantly recycled from endocytic vesicles to plasma membrane, and this has been shown to be important for cell migration and invasion as well. Deregulation of integrin functionality can lead to deleterious illnesses, such as bleeding or inflammatory disorders. It is also evident that integrin deregulation is associated with cancer progression. In this study, a novel Beta1 integrin associating protein, Rab21, was characterized. Rab21 binding to integrin cytoplasmic tail was shown to be important for Beta1 integrin endo- and exocytosis – intracellular trafficking. It was furher shown that this interaction has an important role in cell adhesion, migration, as well as in the final step of cell division, cytokinesis. This work showed that abrogation of Rab21 function or β1 integrin endocytic traffic, can lead to defects in cell division and results in formation of multinucleated cells. Multinucleation and especially tetraploidy can be a transient pathway to aneuploidy and tumorigenesis. This work characterized chromosomal deletions in rab21 locus in ovarian and prostate cancer samples and showed that a cell line with rab21 deletion also had impairment in cell division, which could be rescued by Rab21 re-expression. The work demonstrates an important role for Rab21 and Beta1 integrin traffic regulation in cell adhesion and division, and suggests a probable associaton with tumorigenesis. In this study, Beta1 integrin activity regulation was also addressed. A novel cell array platform for genome-scale RNAi screenings was characterized here. More than 4500 genes were knocked-down in prostate cancer cells using siRNA-mediated silencing. The effects on Beta1 integrin activity were analyzed upon knock-downs. The screen identified more that 400 putative regulators of Beta1 integrin activity in prostate cancer. In conclusion, this work will help us to understand complex regulatory pathways involved in cancer cell adhesion and migration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molecular Characteristics of Neuroblastoma with Special Reference to Novel Prognostic Factors and Diagnostic Applications Department of Medical Biochemistry and Genetics Annales Universitatis Turkuensis, Medica-Odontologica, 2009, Turku, Finland Painosalama Oy, Turku, Finland 2009 Background: Neuroblastoma, which is the most common and extensively studied childhood solid cancer, shows a great clinical and biological heterogeneity. Most of the neuroblastoma patients older than one year have poor prognosis despite intensive therapies. The hallmark of neuroblastoma, biological heterogeneity, has hindered the discovery of prognostic tumour markers. At present, few molecular markers, such as MYCN oncogene status, have been adopted into clinical practice. Aims: The aim of the study was to improve the current prognostic methodology of neuroblastoma, especially by taking cognizance of the biological heterogeneity of neuroblastoma. Furthermore, unravelling novel molecular characteristics which associate with neuroblastoma tumour progression and cell differentiation was an additional objective. Results: A new strictly defined selection of neuroblastoma tumour spots of highest proliferation activity, hotspots, appeared to be representative and reliable in an analysis of MYCN amplification status using a chromogenic in situ hybridization technique (CISH). Based on the hotspot tumour tissue microarray immunohistochemistry and high-resolution oligo-array-based comparative genomic hybridization, which was integrated with gene expression and in silico analysis of existing transcriptomics, a polysialylated neural cell adhesion molecule (NCAM) and poorly characterized amplicon at 12q24.31 were discovered to associate with outcome. In addition, we found that a previously considered new neuroblastoma treatment target, the mutated c-kit receptor, was not mutated in neuroblastoma samples. Conclusions: Our studies indicate polysialylated NCAM and 12q24.31 amplicon to be new molecular markers with important value in prognostic evaluation of neuroblastoma. Moreover, the presented hotspot tumour tissue microarray method together with the CISH technique of the MYCN oncogene copy number is directly applicable to clinical use. Key words: neuroblastoma, polysialic acid, neural cell adhesion molecule, MYCN, c-kit, chromogenic in situ hybridization, hotspot

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Integrins are heterodimeric cell adhesion receptors involved in cell-cell and cell-extracellular matrix (ECM) interactions. They transmit bidirectional signals across the cell membrane. This results in a wide range of biological events from cell differentiation to apoptosis. alpha2beta1 integrin is an abundant collagen receptor expressed on the surface of several cell types. In addition to ECM ligands, alpha2beta1 integrins are bound by echovirus 1 (EV1) which uses alpha2beta1 as a receptor to initiate its life cycle in the infected cell. The aim of this thesis project was to provide further insight into the mechanisms of alpha2beta1 integrin ligand recognition and receptor activation. Collagen fibrils are the principal tensile elements of the ECM. Yet, the interaction of alpha2beta1 integrin with the fibrillar form of collagen I has received relatively little attention. This research focused on the ability of alpha2beta1 integrin to act as a receptor for type I collagen fibrils. Also the molecular requirements of the EV1 interaction with alpha2beta1 were studied. Conventionally, ligand binding has been suggested to require integrin activation and the binding may further trigger integrin signalling. Another main objective of this study was to elucidate both the inside-out and outside-in signalling mechanisms of alpha2beta1 integrin in adherent cells. The results indicated that alpha2beta1 integrin is the principal integrin-type collagen receptor for type I collagen fibrils, and alpha2beta1 may participate in the regulation of pericellular collagen fibrillogenesis. Furthermore, alpha2beta1 integrin inside-out activation appeared to be synergistically regulated by integrin clustering and conformational activation. The triggering of alpha2beta1 integrin outside-in signalling, however, was shown to require both conformational changes and clustering. In contrast to ECM ligands, EV1 appeared to take advantage of the bent, inactive form of alpha2beta1 integrin in initiating its life cycle in the cell. This research together with other recent studies, has shed light on the molecular mechanisms of integrin activation. It is becoming evident that large ligands are able to bind to the bent form of integrin, which has been previously considered to be physiologically inactive. Consequently, our understanding of the conformational modulation of integrins upon activation is changing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The prevalence of obesity and type 2 diabetes has increased at an alarming rate in developed countries. It seems in the light of current knowledge that metabolic syndrome may not develop at all without NAFLD, and NAFLD is estimated to be as common as metabolic syndrome in western population (23 % occurrence). Fat in the liver is called ectopic fat, which is triacylglycerols within the cells of non-adipose tissue. Serum alanine aminotransferase (ALT) values correlate positively with liver fat proportions, and increased activity of ALT predicts type 2 diabetes independently from obesity. Berries, high in natural bioactive compounds, have indicated the potential to reduce the risk of obesity-related diseases. Ectopic fat induces common endocrine excretion of adipose tissue resulting in the overproduction of inflammatory markers, which further induce insulin resistance by multiple mechanisms. Insulin resistance inducing hyperinsulinemia and lipolysis in adipocytes increases the concentration of free fatty acids and consequently causes further fat accumulation in hepatocytes. Polyphenolic fractions of berries have been shown to reverse inflammatory reaction cascades in in vitro and animal studies, and moreover to decrease ectopic fat accumulation. The aim of this thesis was to explore the role of northern berries in obesity-related diseases. The absorption and metabolism of selected berry polyphenols, flavonol glycosides and anthocyanins, was investigated in humans, and metabolites of the studied compounds were identified in plasma and urine samples (I, II). Further, the effects of berries on the risk factors of metabolic syndrome were studied in clinical intervention trials (III, IV), and the different fractions of sea buckthorn berry were tested for their ability to reduce postprandial glycemia and insulinemia after high-glucose meal in a postprandial study with humans (V). The marked impact of mixed berries on plasma ALT values (III), as well as indications of the positive effects of sea buckthorn, its fractions and bilberry on omental adiposity and adhesion molecules (IV) were observed. In study V, sea buckthorn and its polyphenol fractions had a promising effect on potprandial metabolism after high-glucose meal. In the literature review, the possible mechanisms behind the observed effects have been discussed with a special emphasis on ectopic fat accumulation. The literature review indicated that especially tannins and flavonoids have shown potential in suppressing diverse reaction cascades related to systemic inflammation, ectopic fat accumulation and insulin resistance development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The incidence of malignant melanoma of the skin has been steadily rising worldwide during the past decades. Most early detected primary tumors can be removed surgically and the prognosis is good. However, at the same time there still is no permanent cure for metastatic melanoma and its prognosis is poor, although lately new effective drugs have emerged. In this thesis, four different approaches of experimental therapy for metastatic melanoma were studied. Endogenous cis-Urocanic acid (UCA) is found in every individual’s skin, where exposure to UV light from the sun generates it from its inactive trans conformation. Cis- UCA was found to destroy malignant melanoma cells in culture under an acidified pH and sufficient concentration through caspase-3 mediated apoptosis. Furthermore, cis-UCA is able to considerably diminish the growth rate in human melanoma tumors on living SCID mice. Using replication-competent Semliki Forest viruses, human melanoma tumors grown in SCID mice were dramatically shrunken as the fulminant production of viruses in melanoma cells leads them to apoptosis within 72 hours. Small oligopeptides attaching to melanoma cells were identified using in vivo phage display. The melanoma-specific peptides found were further tested in vitro on adenoviruses. Ultimately, the adenoviral retargeting using the peptides was tested in vivo. One peptide homed to human transferring receptor upregulated on melanoma cells. In order to kill the malignant melanoma cells with the retargeted adenoviruses, the viruses should carry genetic material producing apoptotic proteins in the cancer tissue. TIMP-3 has been identified as a good candidate for such a protein, as it inhibits malignant cell adhesion as well as promotes apoptosis through a caspase-8 pathway. It is further shown here that adenovirally delivered TIMP-3 is even more potent, as it could kill non-adherent cancer cells, lacking the fully functional death receptor signalling pathway. Adenovirally delivered TIMP-2 also showed marked antitumor effects in human malignant melanoma xenografts on SCID mice both in ex vivo and systemic delivery.