7 resultados para brain-computer interface
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Brain computer interface (BCI) is a kind of human machine interface, which provides a new interaction method between human and computer or other equipment. The most significant characteristic of BCI system is that its control input is brain electrical activities acquired from the brain instead of traditional input such as hands or eyes. BCI technique has rapidly developed during last two decades and it has mainly worked as an auxiliary technique to help the disable people improve their life qualities. With the appearance of low cost novel electrical devices such as EMOTIV, BCI technique has been applied to the general public through many useful applications including video gaming, virtual reality and virtual keyboard. The purpose of this research is to be familiar with EMOTIV EPOC system and make use of it to build an EEG based BCI system for controlling an industrial manipulator by means of human thought. To build a BCI system, an acquisition program based on EMOTIV EPOC system is designed and a MFC based dialog that works as an operation panel is presented. Furthermore, the inverse kinematics of RV-3SB industrial robot was solved. In the last part of this research, the designed BCI system with human thought input is examined and the results indicate that the system is running smoothly and displays clearly the motion type and the incremental displacement of the motion.
Resumo:
Current hearing-assistive technology performs poorly in noisy multi-talker conditions. The goal of this thesis was to establish the feasibility of using EEG to guide acoustic processing in such conditions. To attain this goal, this research developed a model via the constructive research method, relying on literature review. Several approaches have revealed improvements in the performance of hearing-assistive devices under multi-talker conditions, namely beamforming spatial filtering, model-based sparse coding shrinkage, and onset enhancement of the speech signal. Prior research has shown that electroencephalography (EEG) signals contain information that concerns whether the person is actively listening, what the listener is listening to, and where the attended sound source is. This thesis constructed a model for using EEG information to control beamforming, model-based sparse coding shrinkage, and onset enhancement of the speech signal. The purpose of this model is to propose a framework for using EEG signals to control sound processing to select a single talker in a noisy environment containing multiple talkers speaking simultaneously. On a theoretical level, the model showed that EEG can control acoustical processing. An analysis of the model identified a requirement for real-time processing and that the model inherits the computationally intensive properties of acoustical processing, although the model itself is low complexity placing a relatively small load on computational resources. A research priority is to develop a prototype that controls hearing-assistive devices with EEG. This thesis concludes highlighting challenges for future research.
Resumo:
Jatkuvasti lisääntyvä matkapuhelinten käyttäjien määrä, internetin kehittyminen yleiseksi tiedon ja viihteen lähteeksi on luonut tarpeen palvelulle liikkuvan työaseman liittämiseksi tietokoneverkkoihin. GPRS on uusi teknologia, joka tarjoaa olemassa olevia matka- puhelinverkkoja (esim. NMT ja GSM) nopeamman, tehokkaamman ja taloudellisemman liitynnän pakettidataverkkoihin, kuten internettiin ja intranetteihin. Tämän työn tavoitteena oli toteuttaa GPRS:n paketinohjausyksikön (Packet Control Unit, PCU) testauksessa tarvittavat viestintäajurit työasemaympristöön. Aidot matkapuhelinverkot ovat liian kalliita, eikä niistä saa tarvittavasti lokitulostuksia, jotta niitä voisi käyttää GPRS:n testauksessa ohjelmiston kehityksen alkuvaihessa. Tämän takia PCU-ohjelmiston testaus suoritetaan joustavammassa ja helpommin hallittavassa ympäristössä, joka ei aseta kovia reaaliaikavaatimuksia. Uusi toimintaympäristö ja yhteysmedia vaativat PCU:n ja muiden GPRS-verkon yksiköiden välisistä yhteyksistä huolehtivien ohjelman osien, viestintäajurien uuden toteutuksen. Tämän työn tuloksena syntyivät tarvittavien viestintäajurien työasemaversiot. Työssä tarkastellaan eri tiedonsiirtotapoja ja -protokollia testattavan ohjelmiston vaateiden, toteutetun ajurin ja testauksen kannalta. Työssä esitellään kunkin ajurin toteuttama rajapinta ja toteutuksen aste, eli mitkä toiminnot on toteutettu ja mitä on jätetty pois. Ajureiden rakenne ja toiminta selvitetään siltä osin, kuin se on oleellista ohjelman toiminnan kannalta.
Resumo:
Technological innovations, the development of the internet, and globalization have increased the number and complexity of web applications. As a result, keeping web user interfaces understandable and usable (in terms of ease-of-use, effectiveness, and satisfaction) is a challenge. As part of this, designing userintuitive interface signs (i.e., the small elements of web user interface, e.g., navigational link, command buttons, icons, small images, thumbnails, etc.) is an issue for designers. Interface signs are key elements of web user interfaces because ‘interface signs’ act as a communication artefact to convey web content and system functionality, and because users interact with systems by means of interface signs. In the light of the above, applying semiotic (i.e., the study of signs) concepts on web interface signs will contribute to discover new and important perspectives on web user interface design and evaluation. The thesis mainly focuses on web interface signs and uses the theory of semiotic as a background theory. The underlying aim of this thesis is to provide valuable insights to design and evaluate web user interfaces from a semiotic perspective in order to improve overall web usability. The fundamental research question is formulated as What do practitioners and researchers need to be aware of from a semiotic perspective when designing or evaluating web user interfaces to improve web usability? From a methodological perspective, the thesis follows a design science research (DSR) approach. A systematic literature review and six empirical studies are carried out in this thesis. The empirical studies are carried out with a total of 74 participants in Finland. The steps of a design science research process are followed while the studies were designed and conducted; that includes (a) problem identification and motivation, (b) definition of objectives of a solution, (c) design and development, (d) demonstration, (e) evaluation, and (f) communication. The data is collected using observations in a usability testing lab, by analytical (expert) inspection, with questionnaires, and in structured and semi-structured interviews. User behaviour analysis, qualitative analysis and statistics are used to analyze the study data. The results are summarized as follows and have lead to the following contributions. Firstly, the results present the current status of semiotic research in UI design and evaluation and highlight the importance of considering semiotic concepts in UI design and evaluation. Secondly, the thesis explores interface sign ontologies (i.e., sets of concepts and skills that a user should know to interpret the meaning of interface signs) by providing a set of ontologies used to interpret the meaning of interface signs, and by providing a set of features related to ontology mapping in interpreting the meaning of interface signs. Thirdly, the thesis explores the value of integrating semiotic concepts in usability testing. Fourthly, the thesis proposes a semiotic framework (Semiotic Interface sign Design and Evaluation – SIDE) for interface sign design and evaluation in order to make them intuitive for end users and to improve web usability. The SIDE framework includes a set of determinants and attributes of user-intuitive interface signs, and a set of semiotic heuristics to design and evaluate interface signs. Finally, the thesis assesses (a) the quality of the SIDE framework in terms of performance metrics (e.g., thoroughness, validity, effectiveness, reliability, etc.) and (b) the contributions of the SIDE framework from the evaluators’ perspective.
Resumo:
Today, the user experience and usability in software application are becoming a major design issue due to the adaptation of many processes using new technologies. Therefore, the study of the user experience and usability might be included in every software development project and, thus, they should be tested to get traceable results. As a result of different testing methods to evaluate the concepts, a non-expert on the topic might have doubts on which option he/she should opt for and how to interpret the outcomes of the process. This work aims to create a process to ease the whole testing methodology based on the process created by Seffah et al. and a supporting software tool to follow the procedure of these testing methods for the user experience and usability.
Resumo:
The primary goals of this study are to: embed sustainable concepts of energy consumption into certain part of existing Computer Science curriculum for English schools; investigate how to motivate 7-to-11 years old kids to learn these concepts; promote responsive ICT (Information and Communications Technology) use by these kids in their daily life; raise their awareness of today’s ecological challenges. Sustainability-related ICT lessons developed aim to provoke computational thinking and creativity to foster understanding of environmental impact of ICT and positive environmental impact of small changes in user energy consumption behaviour. The importance of including sustainability into the Computer Science curriculum is due to the fact that ICT is both a solution and one of the causes of current world ecological problems. This research follows Agile software development methodology. In order to achieve the aforementioned goals, sustainability requirements, curriculum requirements and technical requirements are firstly analysed. Secondly, the web-based user interface is designed. In parallel, a set of three online lessons (video, slideshow and game) is created for the website GreenICTKids.com taking into account several green design patterns. Finally, the evaluation phase involves the collection of adults’ and kids’ feedback on the following: user interface; contents; user interaction; impacts on the kids’ sustainability awareness and on the kids’ behaviour with technologies. In conclusion, a list of research outcomes is as follows: 92% of the adults learnt more about energy consumption; 80% of the kids are motivated to learn about energy consumption and found the website easy to use; 100% of the kids understood the contents and liked website’s visual aspect; 100% of the kids will try to apply in their daily life what they learnt through the online lessons.