2 resultados para biological aspects
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Coastal areas harbour high biodiversity, but are simultaneously affected by rapid degradations of species and habitats due to human interactions. Such alterations also affect the functioning of the ecosystem, which is primarily governed by the characteristics or traits expressed by the organisms present. Marine benthic fauna is nvolved in numerous functions such as organic matter transformation and transport, secondary production, oxygen transport as well as nutrient cycling. Approaches utilising the variety of faunal traits to assess benthic community functioning have rapidly increased and shown the need for further development of the concept. In this thesis, I applied biological trait analysis that allows for assessments of a multitude of categorical traits and thus evaluation of multiple functional aspects simultaneously. I determined the functional trait structure, diversity and variability of coastal zoobenthic communities in the Baltic Sea. The measures were related to recruitment processes, habitat heterogeneity, large-scale environmental and taxonomic gradients as well as anthropogenic impacts. The studies comprised spatial scales from metres to thousands of kilometres, and temporal scales spanning one season as well as a decade. The benthic functional structure was found to vary within and between seagrass landscape microhabitats and four different habitats within a coastal bay, in papers I and II respectively. Expressions of trait categories varied within habitats, while the density of individuals was found to drive the functional differences between habitats. The findings in paper III unveiled high trait richness of Finnish coastal benthos (25 traits and 102 cateogries) although this differed between areas high and low in salinity and human pressure. In paper IV, the natural reduction in taxonomic richness across the Baltic Sea led to an overall reduction in function. However, functional richness in terms of number of trait categories remained comparatively high at low taxon richness. Changes in number of taxa within trait categories were also subtle and some individual categories were maintained or even increased. The temporal analysis in papers I and III highlighted generalities in trait expressions and dominant trait categories in a seagrass landscape as well as a “type organism” for the northern Baltic Sea. Some initial findings were made in all four papers on the role of common and rare species and traits for benthic community functioning. The findings show that common and rare species may not always express the same trait categories in relation to each other. Rare species in general did not express unique functional properties. In order to advance the understanding of the approach, I also assessed some issues concerning the limitations of the concept. This was conducted by evaluating the link between trait category and taxonomic richness using especially univariate measures. My results also show the need to collaborate nationally and internationally on safeguarding the utility of taxonomic and trait data. The findings also highlight the importance of including functional trait information into current efforts in marine spatial planning and biomonitoring.
Resumo:
It has been commonly thought that standards of beauty are arbitrary cultural conventions that vary between cultures and time. In my thesis I found that it is not so. Instead, I show that attractiveness and preferred traits serve as cues to phenotypic qualities that provide selective benefits for those who choose their mates based on these criteria. In the first study I show that attractive men have a stronger antibody response to the hepatitis b vaccine and higher levels of testosterone than their less attractive peers. Men with low levels of testosterone also tend to have high levels of the stress hormone cortisol, suggesting that their immune responses may have been inhibited by stress hormones. Thus, facial attractiveness may serve as an honest cue of the strength of immune defence in men. In the second study, I show that the attractiveness of the male body is also a cue of better immunity. In addition, I show that adiposity, both in men’s faces and bodies, is a better cue of the strength of immunity and attractiveness than of masculinity. In the third study, I test the preferences of women from 13 countries for facial cues of testosterone and cortisol. I show that there is cross-cultural variation in women’s preference for cues of testosterone and cortisol in male faces. I found a relationship between the health of a nation and women’s preferences for cues of testosterone in the male face and the interaction between preferences for cues of testosterone and cortisol. I show also a relationship between preferences for cues of testosterone and a societal-level measure of parasite stress. Thus, it seems that societal-level ecological factors influence the relative value of traits as revealed by combinations of testosterone and stress hormones. In the fourth study, I show that women’s immune responsiveness (amount of antibodies produced) does not predict facial attractiveness. Instead, plasma cortisol level is negatively associated with attractiveness, indicating that stressed women look less attractive. Fat percentage is curvilinearly associated with facial attractiveness, indicating that being too thin or too fat reduces attractiveness. This study suggests that in contrast to men, facial attractiveness in women does not indicate the strength of immune defence, but is associated with other aspects of long-term health and fertility: circulating levels of the stress hormone cortisol and the percentage of body fat. In the last study I show that the attractiveness of men’s body odor is positively correlated with stress hormone levels, suggesting also that the attractiveness of body odors may signal the phenotypic quality of males to females. However, the attractiveness of men’s body odor was not associated with testosterone levels. My thesis suggests that the standard of beauty is not in the eye of the beholder. Instead, our standard of beauty is hardwired in our brains by genes that are selected by natural selection and also influenced by current environmental conditions.