2 resultados para bci
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Brain computer interface (BCI) is a kind of human machine interface, which provides a new interaction method between human and computer or other equipment. The most significant characteristic of BCI system is that its control input is brain electrical activities acquired from the brain instead of traditional input such as hands or eyes. BCI technique has rapidly developed during last two decades and it has mainly worked as an auxiliary technique to help the disable people improve their life qualities. With the appearance of low cost novel electrical devices such as EMOTIV, BCI technique has been applied to the general public through many useful applications including video gaming, virtual reality and virtual keyboard. The purpose of this research is to be familiar with EMOTIV EPOC system and make use of it to build an EEG based BCI system for controlling an industrial manipulator by means of human thought. To build a BCI system, an acquisition program based on EMOTIV EPOC system is designed and a MFC based dialog that works as an operation panel is presented. Furthermore, the inverse kinematics of RV-3SB industrial robot was solved. In the last part of this research, the designed BCI system with human thought input is examined and the results indicate that the system is running smoothly and displays clearly the motion type and the incremental displacement of the motion.
Resumo:
Current hearing-assistive technology performs poorly in noisy multi-talker conditions. The goal of this thesis was to establish the feasibility of using EEG to guide acoustic processing in such conditions. To attain this goal, this research developed a model via the constructive research method, relying on literature review. Several approaches have revealed improvements in the performance of hearing-assistive devices under multi-talker conditions, namely beamforming spatial filtering, model-based sparse coding shrinkage, and onset enhancement of the speech signal. Prior research has shown that electroencephalography (EEG) signals contain information that concerns whether the person is actively listening, what the listener is listening to, and where the attended sound source is. This thesis constructed a model for using EEG information to control beamforming, model-based sparse coding shrinkage, and onset enhancement of the speech signal. The purpose of this model is to propose a framework for using EEG signals to control sound processing to select a single talker in a noisy environment containing multiple talkers speaking simultaneously. On a theoretical level, the model showed that EEG can control acoustical processing. An analysis of the model identified a requirement for real-time processing and that the model inherits the computationally intensive properties of acoustical processing, although the model itself is low complexity placing a relatively small load on computational resources. A research priority is to develop a prototype that controls hearing-assistive devices with EEG. This thesis concludes highlighting challenges for future research.