6 resultados para base-age invariant dynamic equation

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Firms operating in a changing environment have a need for structures and practices that provide flexibility and enable rapid response to changes. Given the challenges they face in attempts to keep up with market needs, they have to continuously improve their processes and products, and develop new products to match market requirements. Success in changing markets depends on the firm's ability to convert knowledge into innovations, and consequently their internal structures and capabilities have an important role in innovation activities. According 10 the dynamic capability view of the firm, firms thus need dynamic capabilities in (he form ofassets, processes and structures that enable strategic flexibility and support entrepreneurial opportunity sensing and exploitation. Dynamic capabilities are also needed in conditions of rapid change in the operating environment, and in activities such as new product development and expansion to new markets. Despite the growing interest in these issues and the theoretical developments in the field of strategy research, there are still only very few empirical studies, and large-scale empirical studies in particular, that provide evidence that firms'dynamic capabilities are reflected in performance differences. This thesis represents an attempt to advance the research by providing empirical evidence of thelinkages between the firm's dynamic capabilities and performance in intenationalization and innovation activities. The aim is thus to increase knowledge and enhance understanding of the organizational factors that explain interfirm performance differences. The study is in two parts. The first part is the introduction and the second part comprises five research publications covering the theoretical foundations of the dynamic capability view and subsequent empirical analyses. Quantitative research methodology is used throughout. The thesis contributes to the literature in several ways. While a lot of prior research on dynamic capabilities is conceptual in nature, or conducted through case studies, this thesis introduces empirical measures for assessing the different aspects, and uses large-scale sampling to investigate the relationships between them and performance indicators. The dynamic capability view is further developed by integrating theoretical frameworks and research traditions from several disciplines. The results of the study provide support for the basic tenets of the dynamic capability view. The empirical findings demonstrate that the firm's ability to renew its knowledge base and other intangible assets, its proactive, entrepreneurial behavior, and the structures and practices that support operational flexibility arepositively related to performance indicators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, twomechanisms whichmake the systemstiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation are proposed. Generally, in hydraulic power transmission systems the orifice flow is clearly in the turbulent area. The flow becomes laminar as the pressure drop over the orifice approaches zero only in rare situations. These are e.g. when a valve is closed, or an actuator is driven against an end stopper, or external force makes actuator to switch its direction during operation. This means that in terms of accuracy, the description of laminar flow is not necessary. But, unfortunately, when a purely turbulent description of the orifice is used, numerical problems occur when the pressure drop comes close to zero since the first derivative of flow with respect to the pressure drop approaches infinity when the pressure drop approaches zero. Furthermore, the second derivative becomes discontinuous, which causes numerical noise and an infinitely small integration step when a variable step integrator is used. A numerically efficient model for the orifice flow is proposed using a cubic spline function to describe the flow in the laminar and transition areas. Parameters for the cubic spline function are selected such that its first derivative is equal to the first derivative of the pure turbulent orifice flow model in the boundary condition. In the dynamic simulation of fluid power circuits, a tradeoff exists between accuracy and calculation speed. This investigation is made for the two-regime flow orifice model. Especially inside of many types of valves, as well as between them, there exist very small volumes. The integration of pressures in small fluid volumes causes numerical problems in fluid power circuit simulation. Particularly in realtime simulation, these numerical problems are a great weakness. The system stiffness approaches infinity as the fluid volume approaches zero. If fixed step explicit algorithms for solving ordinary differential equations (ODE) are used, the system stability would easily be lost when integrating pressures in small volumes. To solve the problem caused by small fluid volumes, a pseudo-dynamic solver is proposed. Instead of integration of the pressure in a small volume, the pressure is solved as a steady-state pressure created in a separate cascade loop by numerical integration. The hydraulic capacitance V/Be of the parts of the circuit whose pressures are solved by the pseudo-dynamic method should be orders of magnitude smaller than that of those partswhose pressures are integrated. The key advantage of this novel method is that the numerical problems caused by the small volumes are completely avoided. Also, the method is freely applicable regardless of the integration routine applied. The superiority of both above-mentioned methods is that they are suited for use together with the semi-empirical modelling method which necessarily does not require any geometrical data of the valves and actuators to be modelled. In this modelling method, most of the needed component information can be taken from the manufacturer’s nominal graphs. This thesis introduces the methods and shows several numerical examples to demonstrate how the proposed methods improve the dynamic simulation of various hydraulic circuits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this thesis is the development of a multibody dynamic model matching the observed movements of the lower limb of a skier performing the skating technique in cross-country style. During the construction of this model, the formulation of the equation of motion was made using the Euler - Lagrange approach with multipliers applied to a multibody system in three dimensions. The description of the lower limb of the skate skier and the ski was completed by employing three bodies, one representing the ski, and two representing the natural movements of the leg of the skier. The resultant system has 13 joint constraints due to the interconnection of the bodies, and four prescribed kinematic constraints to account for the movements of the leg, leaving the amount of degrees of freedom equal to one. The push-off force exerted by the skate skier was taken directly from measurements made on-site in the ski tunnel at the Vuokatti facilities (Finland) and was input into the model as a continuous function. Then, the resultant velocities and movement of the ski, center of mass of the skier, and variation of the skating angle were studied to understand the response of the model to the variation of important parameters of the skate technique. This allowed a comparison of the model results with the real movement of the skier. Further developments can be made to this model to better approximate the results to the real movement of the leg. One can achieve this by changing the constraints to include the behavior of the real leg joints and muscle actuation. As mentioned in the introduction of this thesis, a multibody dynamic model can be used to provide relevant information to ski designers and to obtain optimized results of the given variables, which athletes can use to improve their performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Why are some companies more successful than others? This thesis approaches the question by enlisting theoretical frameworks that explain the performance with internal factors, deriving from the resource-based view, namely the dynamic capabilities approach. To deepen the understanding of the drivers and barriers towards developing these higher order routines aiming at improving the operational level routines, this thesis explores the organisational culture and identity research for the microfoundational antecedents that might shed light on the formation of the dynamic capabilities. The dynamic capabilities framework in this thesis strives to take the theoretical concept closer to practical applicability. This is achieved through creation of a dynamic capabilities matrix, consisting of four dimensions often encountered in dynamic capabilities literature. The quadrants are formed along internal-external and resources-abilities axes, and consist of Sensing, Learning, Reconfiguration and Partnering facets. A key element of this thesis is the reality continuum, which illustrates the different levels of reality inherent in any entity of human individuals. The theoretical framework constructed in the thesis suggests a link between the collective but constructivist understanding of the organisation and both the operational and higher level routines, evident in the more positivist realm. The findings from three different case organisations suggest that the constructivist assumptions inherent to an organisation function as a generative base for both drivers and barriers towards developing dynamic capabilities. From each organisation one core assumption is scrutinized to identify its connections to the four dimensions of the dynamic capabilities. These connections take the form of drivers or barriers – or have the possibility to develop into one or the other. The main contribution of this thesis is to show that one key for an organisation to perform well in a turbulent setting, is to understand the different levels of realities inherent in any group of people. Recognising the intangible levels gives an advantage in the tangible ones.