33 resultados para back-pressure turbine
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Diplomityön tavoitteena oli selvittää tapoja hallita voimalaitoksen höyryjärjestelmän paineensäätöä. Työ on tehty Neste Oilin Porvoon jalostamon energialaitoksen höyryjärjestelmästä. Energialaitos käsittää kaksi höyrykattilaa ja kaasuturbiinivoimalaitoksen, sekä öljynjalostamolla sijaitsevat höyrykattilan ja kaasuturbiinivoimalaitoksen. Höyryverkon häiriötilanteet aiheuttavat paineenlaskua höyryverkossa, jos jonkun höyryntuottajan tuotanto keskeytyy, tai paineennousua höyryverkossa, jos joku höyrynkuluttajista ei kuluta enää höyryä. Nykyisessä tilanteessa vakavin paineen laskua aiheuttava häiriötilanne olisi energialaitoksen höyrykattilan tuotannon keskeytyminen. Vakavin paineennousua aiheuttava häiriötilanne olisi suurimman kuluttajan,eli energialaitoksen vastapaineturbiinin, irtaantuminen höyryverkosta. Paineen hallinta voidaan toteuttaa oikeanlaisilla automaation ratkaisuilla, joita on mahdollista kehittää käyttökokemukseen perustuen järjestelmäpäivitysten yhteydessä. Häiriötilanteita voidaan yrittää ennakoida kunnossapidon keinoin niin, että vikaantuminen havaitaan ennen kuin vakava häiriö tapahtuu. Erityisesti kunnossapitostrategian kehittäminen auttaisi kohdistamaan kunnossapitotoimenpiteet oleellisimpiin kohteisiin kustannustehokkaasti. Lisäksi käyttöhenkilökunnan oikeanlaisella toiminnalla häiriön sattuessa voidaan häiriöiden aiheuttamia seuraamuksia tuotantoon ja turvallisuuteen lieventää. Käyttöhenkilökunnan toimintaa voidaan parantaa koulutuksella.
Resumo:
Diplomityössä on selvitetty UPM-Kymmene-konserniin kuuluvan Voikkaan paperitehtaan höyryvoimalaitoksen liityntärajapintaa paperikoneprosessiin. Selvitys tehtiin, koska nykyinen voimalaitos on suunniteltu korvattavaksi uudella lähivuosina. Työn teoriaosassa tarkastellaan mm. eri voimalaitostyyppejä, prosessivoimalaitoksen säätöjärjestelmiä sekä väliottovastapaineturbiinilta saatavan sähkötehon laskemiseksi tarvittavaa teoriaa. Käytännössä suurin työ on tehty nykyisen tuotantoprosessin voimalaitokselle asettamien vaatimusten selvittämisessä. Tämä on toteutettu tarkastelemalla online-mittauspositioita hyödyntäen laitoksen eri historiatietokantoja. Tulevan voimalaitoksen väliottovastapaineturbiinilta saatavaa sähkötehoa on tarkasteltu vuoden 2000 prosessihöyryn massavirtoihin perustuen. Kirjalliseen työhön on sisällytetty kuvaajat prosessin tärkeimmistä tila-arvoista. Yksityiskohtainen rajapinnan tarkastelu kuvaajineen ja lukuarvoineen on toimitettu diplomityöpaikalle tiedostomuodossa.
Resumo:
Tässä diplomityössä selvitettiin sähköntuotannon kannattavuus pienissä biopolttoaineita käyttävissä laitoksissa. Työ jaettiin kahteen osaan. Ensimmäisessä osassa tarkasteltiin turbiini-investoinnin kannattavuutta Punkavoima Oy:n kattilalaitoksella. Toisessa osassa tutkittiin sähkön ja lämmön yhteistuotannon mahdollisuutta pienillä laitoksilla, joissa lämpökuorma muodostuu pienen kunnan kaukolämpöverkon mukaan. Punkavoima Oy tuottaa prosessihöyryä Finnforest Oyj:n Punkaharjun tehtaille ja kaukolämpöä Punkaharjun taajamaan. Uusi 30 MWth tehoinen kattilalaitos, jota ei varustettu turbiinilaitoksella, otettiin kaupalliseen käyttöön toukokuussa 2002.Tarkastelun kohteena oli 3 erilaista turbiinivaihtoehtoa. Mahdollinen tehtaiden höyrykuorman muutos otettiin myös huomioon. Toisessa osassa tutkittiin pienten laitosten soveltuvuutta lämmön ja sähkön yhteistuotantoon. Tarkastelun kohteena olleet vaihtoehdot olivat: ORC- prosessi (Organic Rankine Cycle), Novel- voimalaitos (puun kaasutus), Wärtsilä BioGrate- voimalaitos sekä höyrykone.
Resumo:
Tässä diplomityössä on mallinnettu höyry- ja kaasuturbiini Balas -prosessisimulointi-ohjelmaan. Balas on Valtion Teknillisen Tutkimuskeskuksen kehittämä simulointiohjelma, erityisesti paperi- ja selluteollisuuden prosessien staattiseen simulointiin. Työn tavoitteena on kehittää simulointimallit höyry- ja kaasuturbiinille, sekä tutkia niiden toimivuutta vertaamalla simulointeja mittaus- ja mitoitustietoihin. Työssä on muodostettu matemaattiset mallit höyryturbiinille, höyryturbiinin säätövyöhykkeelle sekä höyryturbiinin off-design laskennalle. Kaasuturbiinille muodostettiin toimintakäyrät, joiden avulla tarkastellaan sen toimintaa off-design tilanteessa. Komponentit mallinnettiin diplomityövaiheessa Matlab-ympäristöön, josta ne siirretään Balasiin erillisessä työvaiheessa. Malleissa on kiinnitetty huomiota erityisesti niiden helppokäyttöisyyteen ja monipuolisuuteen. Höyryturbiinimalleja testattiin simuloimalla erään paperitehtaan yhteydessä toimivan voimalaitoksen vastapaineturbiini säätövyöhykkeineen ja vertaamalla simulointituloksia tehtaan mittaustietoihin. Kaasuturbiinimallia testattiin vertaamalla GE Power MS 7001 kaasuturbiinin mitoitustietoja vastaavilla parametreilla simuloituun tapaukseen.
Resumo:
Diplomityössä tutkitaan sähkön ja lämmön yhteistuotannon kannattavuutta Turengin nykyisen lämmöntuotannon yhteydessä. Tavoitteena on löytää taloudellisesti kilpailukykyiset tuotantovaihtoehdot Turengin energiahuollon kehittämisessä. Ensimmäisenä tarkasteltarkastellaan voimalaitoksen nykyiseen tuotantolaitteistoon kuuluvan vastapainehöyryturbiinin käyttöönoton mahdollisuuksia. Tämän jälkeen suoritetaan kannattavuuslaskelmat neljälle vaihtoehtoiselle investointitapaukselle. Voimalaitosinvestoinnit kohdistuvat kaasumoottori- ja kaasuturbiinivoimalaitoksiin, joilla tuotetaan sähköä, kaukolämpöä ja eräissä tapauksissa myös prosessihöyryä. Voimalaitosten nettosähkötehot ovat neljästä yhdeksään megawattia. Voimalaitosyksiköiden energiantuotanto määritetään Turengin lämpökuormien perusteella. Tuotannon määrityksessä apuna käytetään WinTEHO –ohjelmistoa, johon luodaan tarvittavat energiatiedostot. Kannattavuuslaskelmat suoritetaan vertaamalla investointivaihtoehtojen aiheuttamia vuotuisia kassavirtoja nykyisen tuotannon mukaisiin kassavirtoihin. Kassavirtalaskelmasta saadaan kullekin vaihtoehdolle nettonykyarvo, sisäinen korko ja takaisinmaksuaika. Tarkastelun tuloksena saatiin, että voimalaitosvaihtoehdoista kannattavin on investointi yhteen kaasumoottoriin, jolla tuotetaan sähkön lisäksi vain kaukolämpöä. Alhaisilla sähkön hinnoilla kaasuturbiinivaihtoehdot ovat suunnilleen yhtä kannattavia. Investointien nykyarvo valitulla korkokannalla on positiivinen, kun sähkön markkinahinnan keskiarvo tuotantokaudella ylittää likimain tason 130 mk/MWh. Nykyisillä markkinahinnoilla investoinnit eivät ole kannattavia. Investoiminen uuteen kaasumoottoriin tai -turbiiniin osoittautui kannattavammaksi kuin sähkön tuotannon aloittaminen laitoksen nykyisellä höyryturbiinilla. Merkittävin syy tähän oli höyryturbiinituotannon korkeat henkilöstökustannukset. Tehty selvitys tukee vallitsevaa käsitystä, että nykytekniikalla sähkön ja lämmön yhteistuotanto on taloudellisesti kilpailukykyistä myös pienessä kokoluokassa.
Resumo:
Tässä työssä on selvitetty sellutehtaan höyryverkosta tehtaan ulkopuolelle myytävän ylijäämähöyryn määrän ja paineen nopeaan vaihteluun vaikuttavia tekijöitä. Työssä on tarkasteltu höyryn kehityksen ja kulutuksen vaihtelun vaikutusta ylijäämähöyryyn. Lisäksi on tarkasteltu mahdollisuuksia edellä mainittujen häiriöiden tasaamiseksi. Työssä on selvitetty teoriaa, joka vaikuttaa sellutehtaan höyryn kehitykseen ja kulutukseen. Lisäksi on selvitetty energiataselaskennan ja höyryverkon hallintaa parantavien toimenpiteiden teoriaa. Omana kokonaisuutena on sellutehtaan höyryn kehityksen ja kulutuksen tarkastelu sekä selvitys tehtaan höyryverkon hallinnan nykytilasta. Höyryverkolle on muodostettu energiatase. Työn tuloksia varten on kerätty ja tallennettu mittapistetietoa tiedonkeräysjärjestelmän avulla eri höyryverkon mittapisteistä. Työn tuloksina on mainittu useita höyryverkon hallintaa parantavia toteutuskelpoisia asioita ja toimenpiteitä. Työllä on luotu pohjaa menetelmälle, joka ohjaa energian kehitystä vastaamaan sellun tuotannon tarvitsemaa energiamäärää. Samalla saataisiin paremmin hallittua ylijäämähöyryä ja sen määrän sekä paineen vaihtelu vähentyisi.
Resumo:
Diplomityön tavoitteena oli antaa kuva vastapainevoimalaitoksen automaation toiminnallisesta suunnittelusta ja soveltaa teoriaa suunnittelemalla toiminnallisuus vesihöyrypiirin tärkeimmille osuuksille. Työssä on esitelty tyypillinen EPCM-voimalaitosprojekti, joka toteutetaan ulkopuolisen avustajan kanssa tehdyllä yhteistyöllä. Projektin koostuu laitoksen suunnittelu-, rakennus-, asennus- sekä käyttöönottovaiheista. Huomioitavia asioita ovat mm. projektin budjetti sekä aikataulu. Valvonnalla on suuri merkitys projektin onnistumiseen. Lisäksi työssä esitellään vastapainevoimalaitoksen vesihöyrypiirin prosessi, pääsäädöt sekä automaatiojärjestelmä. Vesihöyrypiirillä tarkoitetaan syöttövesi-, höyry- ja kaukolämpöjärjestelmää. Pääsäädöillä pyritään saamaan tuotanto vastaamaan kulutusta. Voimalaitoksen painopiste on kaukolämmön tuottaminen. Automaatiojärjestelmän toiminnoilla tarkoitetaan järjestelmän suorittamia ohjauksia, säätöjä sekä hälytyksiä. Toiminnallisessa suunnittelussa tehdään toimilaitteille niin yksittäisohjaukset, säädöt kuin hälytysluettelot. Työssä tehty toiminnallinen suunnittelu keskittyy erityisesti toimilaitteiden säätöpiireihin. Säätöpiirit koostuvat tärkeimmistä prosessiin liittyvistä komponenteista ja säätömerkeistä. Toiminnallisen suunnittelun dokumentaatioita käytetään automaatiojärjestelmän sovellusohjelmoinnin pohjana.
Resumo:
Diplomityön tavoitteena on selvittää Loviisan ydinvoimalaitoksen höyryturbiinin hyötysuhteen parantamismahdollisuuksia. Työn kuvaan liittyvät oleellisesti höyryturbiinin siipivyöhykkeiden nopeuskolmioiden sekä hyötysuhteiden laskenta. Höyryturbiinien kehityskaarta sekä turbiinin häviökerrointen laskentayhtälöitä on esitetty useasta eri lähteestä ja vuosikymmeniltä. Työssä selvitettiin uusimpia ydinvoimalaitosten kostea höyryturbiinien suunnitteluperusteita lukuisista eri lähteistä. Kaikkien lähteiden mukaan kostean höyryn alueella tapahtuvaa paisuntaa on haasteellista mallintaa. Työssä on esitelty artikkeleissa tulleita eri näkökulmia höyryturbiinien suorituskyvyn parantamiseksi, sekä rakenteellisia että laskennallisia. Työssä esitellään monia turbiinin virtauksen ja suorituskyvyn laskentamenetelmiä. Esimerkiksi Baumannin säännön laskenta on yksinkertainen tapa käsitellä turbiinin suorituskykyä kostean höyryn alueella. Keskeisimpiä tehtyjä havaintoja oli se, että korkeapaineturbiinin ensimmäisestä vaiheesta löytyi mahdollista parannuspotentiaalia Loviisaan ydinvoimalaitoksen tehon lisäämiseksi. Ensimmäisessä vaiheessa on oletettu siipien olevan Laval –tyyppisiä, mutta käytännössä näin ei ole. Korkeapaineturbiinin nykyisen turbosuuttimen toimintaa voitaisiin tehostaa. Lisäksi Loviisan matalapaineturbiinin viimeisen siipivaiheen jälkeen aiheutuu suuret ulosvirtaushäviöt. Osa suurinopeuksisen virtauksen energiasta pystyttäisiin kuitenkin hyödyntämään vielä ulosvirtauskanavassa olevalla diffuusorilla.
Resumo:
Maailman energian kulutuksen lisääntymisen ja ilmastonmuutoksen myötä energiantuotannossa joudutaan jatkuvasti sopeutumaan muuttuviin tilanteisiin ja haasteisiin. Polttoteknillisiä haasteita aiheuttavat pelto- ja kierrätyspolttoaineet ovat lisäämässä osuuttaan uusiutuvien polttoaineiden joukossa. Jotta kyseisiä haasteellisia polttoaineita pystytään hyödyntämään, täytyy niiden aiheuttamat ongelmat tuntea ja laitevalmistajien kehittää niiden hyödyntämiseen sopivaa tekniikkaa. Tässä diplomityössä käydään läpi tulevaisuudessa käytettävät polttoaineet, nykyiset päästörajat, kiinteiden polttoaineiden poltto- ja kaasutustekniikat sekä likaantumis-, kuonaantumis- ja korroosiomekanismit voimalaitoskattiloissa. Työssä tutkitaan, onko haasteellisten polttoaineiden käyttöön investoiminen järkevää ja mikä nykypäivän tekniikoista on kannattavin. Myös välitulistuksen, lauhdeperän ja apujäähdyttimen kannattavuuksia vertaillaan sähkön ja lämmön yhteistuotannossa. Tuloksiksi saatiin, että edullisten peltobiomassojen ja kierrätyspolttoaineiden käyttäminen, joko perinteisten polttoaineiden seassa tai pääpolttoaineena, on nykyhinnoilla perinteisiin polttoaineisiin verrattuna kannattavaa. Investoiminen kierrätyspolttoaineiden valmistuslaitteisiin maksimoi kierrätyspolttoaineista saatavaa hyötyä. Välitulistuksen todettiin soveltuvan huonosti vastapaineprosessiin, sillä siitä saatava sähköntuotannon lisäys on hyvin pieni. Lauhdeperän ja apujäähdyttimen vertailuissa huomattiin, että lauhdeperä on kannattava investointi, jos sähkön ja lämmön hintaero pysyy tarpeeksi suurena. Haasteellisilla polttoaineilla pystytään pienentämään kasvihuonepäästöjä ja korvaamaan fossiilisten polttoaineiden käyttöä.
Resumo:
Diplomityössä käsitellään ydinvoimalaitoksen matalapaineturbiinin ulosvirtauskanavaa. Tavoitteena oli tarkastella ulosvirtauskanavassa syntyviä häviöitä sekä niiden pienentämistä. Tarkastelussa käsiteltiin jossain määrin myös turbiinin viimeisessä siipivaiheessa syntyviä häviöitä. Työssä selvitettiin Loviisan voimalaitoksella tehtyihin mittauksiin perustuen painehäviö ulosvirtauskanavassa lauhduttimen paineen funktiona ja näiden syntyvien häviöiden vaikutusta turbiinin tuottamaan teoreettiseen tehoon. Ulosvirtauskanavan diffuusoria käsiteltiin omana laajana kokonaisuutenaan. Aluksi tarkasteltiin diffuusorin suorituskykyä yksinkertaisiin laskelmiin perustuen, jonka jälkeen diffuusorin toimintaa mallinnettiin FLUENT – laskentaohjelmalla, jolloin voitiin paremmin havainnollistaa virtauksen käyttäytymistä diffuusorissa. Kokeellisia mittaustuloksia ei ollut käytössä, joten laskennan oikeellisuus jäi tältä osin toteamatta.
Resumo:
TVO suunnittelee reaktoritehon 10 %:n korotusta Olkiluoto 1 ja 2 -voimalaitoksille. Reaktoriteho nostetaan 2500 MW:sta 2750 MW:iin polttoaineen rikastusastetta nostamalla ja pääkiertovirtausta kasvattamalla. Samalla syöttövesivirtaus reaktoriin ja tuorehöyryvirtaus turpiineille kasvaa. Lauhteenpuhdistusjärjestelmän kapasiteettia ei voida kuitenkaan kasvattaa, joten massavirran lisäys toteutetaan ottamalla käyttöön korkeapainesivulauhteen eteenpäinpumppaus. Lauhteen esilämmityslinjojen, lauhteenpuhdistuksen ja syöttövesipumppujen massavirta säilyy siten nykyisellään. Muita merkittäviä tehonkorotukseen liittyviä laitosmuutoksia ovat pääkiertopumppujen uusinta ja korkeapaineturpiinin muutokset. Tehonkorotetun prosessin käytettävyyden varmistamiseksi tehdään häiriöanalyysejä Apros-prosessisimulointiohjelmistoa käyttäen. OL1 ja OL2 -laitoksista on olemassa validoitu 2500 MW:n laitosmalli, josta muokatulla 2750 MW:n laitosmallilla simuloinnit tehdään. Häiriöanalyysien avulla selvitetään säätöjärjestelmien kyky pitää prosessin tila hallinnassa ilman suojausautomaation laukeamista. Simuloituihin tapauksiin kuuluu pumppujen ja venttiilien vikaantumistapauksia sekä turpiini- ja reaktoripuolen pikasulku- ja osittaispikasulkutapauksia. Myös meriveden lämpötilan vaikutusta häiriötilanteisiin tarkastellaan. Analyysien perusteella voimalaitosten ohjaus- ja suojausautomaatio toimivat hyvin myös korotetulla teholla. Tehonkorotuksen jälkeiset suuremmat massavirrat aiheuttavat kuitenkin voimakkaampia reaktoripaineen ja -tehon vaihteluita varsinkin venttiilien sulkeutumistapauksissa. Simuloinnit osoittivat, että tehonkorotus 2500 MW:sta 2750 MW:iin on mahdollinen, mutta aiheuttaa pieniä muutoksia laitoksen suojausjärjestelmien laukaisurajoihin.
Resumo:
Diplomityössä tutkittiin Fortumin Loviisan ydinvoimalaitoksen ulosvirtauskanaviston ja suurnopeuskosteudenerottimen toimintaa, sekä selvitettiin taustalla olevaa teoriaa ja aiemmin tehtyjä tutkimuksia. Tavoitteena oli ymmärtää ja esittää laitteiden toimintaa, sekä tutkia voiko ulosvirtauskanaviston suorituskykyä parantaa geometrian muutoksilla. Työssä luotiin tutkittaville kohteille geometriat ja laskentahilat, joiden avulla simuloitiin niiden toimintaa eri käyttötilanteissa numeerisen virtauslaskennan avulla. Laskennan reunaehdot saatiin olemassa olevasta prosessimallista ja aiemmista turbiiniselvityksistä. Ulosvirtauskanaviston suorituskyky laskettiin kolmella eri lauhdutinpaineella neljällä eri geometrialla. Geometrian muutokset vaikuttivat selkeästi ulosvirtauskanaviston suorituskykyyn ja sitä saatiin parannettua. Kaksi kolmesta muutoksesta, lisäkanavat ja oikaistu vesilippa, pa-ransivat suorituskykyä. Lokinsiipien poistaminen heikensi ulosvirtauskanaviston toi-mintaa. Suurnopeuskosteudenerottimen mallintaminen jäi lähtötietojen ja ajan puutteen takia hieman tavoitteesta. Sekä ulosvirtauskanaviston että suurnopeuskosteudenerotti-men jatkotutkimusta ja mahdollisia toimenpiteitä varten saatiin arvokasta uutta tietoa.
Resumo:
The steam turbines play a significant role in global power generation. Especially, research on low pressure (LP) steam turbine stages is of special importance for steam turbine man- ufactures, vendors, power plant owners and the scientific community due to their lower efficiency than the high pressure steam turbine stages. Because of condensation, the last stages of LP turbine experience irreversible thermodynamic losses, aerodynamic losses and erosion in turbine blades. Additionally, an LP steam turbine requires maintenance due to moisture generation, and therefore, it is also affecting on the turbine reliability. Therefore, the design of energy efficient LP steam turbines requires a comprehensive analysis of condensation phenomena and corresponding losses occurring in the steam tur- bine either by experiments or with numerical simulations. The aim of the present work is to apply computational fluid dynamics (CFD) to enhance the existing knowledge and understanding of condensing steam flows and loss mechanisms that occur due to the irre- versible heat and mass transfer during the condensation process in an LP steam turbine. Throughout this work, two commercial CFD codes were used to model non-equilibrium condensing steam flows. The Eulerian-Eulerian approach was utilised in which the mix- ture of vapour and liquid phases was solved by Reynolds-averaged Navier-Stokes equa- tions. The nucleation process was modelled with the classical nucleation theory, and two different droplet growth models were used to predict the droplet growth rate. The flow turbulence was solved by employing the standard k-ε and the shear stress transport k-ω turbulence models. Further, both models were modified and implemented in the CFD codes. The thermodynamic properties of vapour and liquid phases were evaluated with real gas models. In this thesis, various topics, namely the influence of real gas properties, turbulence mod- elling, unsteadiness and the blade trailing edge shape on wet-steam flows, are studied with different convergent-divergent nozzles, turbine stator cascade and 3D turbine stator-rotor stage. The simulated results of this study were evaluated and discussed together with the available experimental data in the literature. The grid independence study revealed that an adequate grid size is required to capture correct trends of condensation phenomena in LP turbine flows. The study shows that accurate real gas properties are important for the precise modelling of non-equilibrium condensing steam flows. The turbulence modelling revealed that the flow expansion and subsequently the rate of formation of liquid droplet nuclei and its growth process were affected by the turbulence modelling. The losses were rather sensitive to turbulence modelling as well. Based on the presented results, it could be observed that the correct computational prediction of wet-steam flows in the LP turbine requires the turbulence to be modelled accurately. The trailing edge shape of the LP turbine blades influenced the liquid droplet formulation, distribution and sizes, and loss generation. The study shows that the semicircular trailing edge shape predicted the smallest droplet sizes. The square trailing edge shape estimated greater losses. The analysis of steady and unsteady calculations of wet-steam flow exhibited that in unsteady simulations, the interaction of wakes in the rotor blade row affected the flow field. The flow unsteadiness influenced the nucleation and droplet growth processes due to the fluctuation in the Wilson point.
Resumo:
Summary