12 resultados para aristolactam AII

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photosystem II (PSII) of oxygenic photosynthesis is susceptible to photoinhibition. Photoinhibition is defined as light induced damage resulting in turnover of the D1 protein subunit of the reaction center of PSII. Both visible and ultraviolet (UV) light cause photoinhibition. Photoinhibition induced by UV light damages the oxygen evolving complex (OEC) via absorption of UV photons by the Mn ion(s) of OEC. Under visible light, most of the earlier hypotheses assume that photoinhibition occurs when the rate of photon absorption by PSII antenna exceeds the use of the absorbed energy in photosynthesis. However, photoinhibition occurs at all light intensities with the same efficiency per photon. The aim of my thesis work was to build a model of photoinhibition that fits the experimental features of photoinhibition. I studied the role of electron transfer reactions of PSII in photoinhibition and found that changing the electron transfer rate had only minor influence on photoinhibition if light intensity was kept constant. Furthermore, quenching of antenna excitations protected less efficiently than it would protect if antenna chlorophylls were the only photoreceptors of photoinhibition. To identify photoreceptors of photoinhibition, I measured the action spectrum of photoinhibition. The action spectrum showed resemblance to the absorption spectra of Mn model compounds suggesting that the Mn cluster of OEC acts as a photoreceptor of photoinhibition under visible light, too. The role of Mn in photoinhibition was further supported by experiments showing that during photoinhibition OEC is damaged before electron transfer activity at the acceptor side of PSII is lost. Mn enzymes were found to be photosensitive under visible and UV light indicating that Mn-containing compounds, including OEC, are capable of functioning as photosensitizers both in visible and UV light. The experimental results above led to the Mn hypothesis of the mechanism of continuous-light-induced photoinhibition. According to the Mn hypothesis, excitation of Mn of OEC results in inhibition of electron donation from OEC to the oxidized primary donor P680+ both under UV and visible light. P680 is oxidized by photons absorbed by chlorophyll, and if not reduced by OEC, P680+ may cause harmful oxidation of other PSII components. Photoinhibition was also induced with intense laser pulses and it was found that the photoinhibitory efficiency increased in proportion to the square of pulse intensity suggesting that laser-pulse-induced photoinhibition is a two-photon reaction. I further developed the Mn hypothesis suggesting that the initial event in photoinhibition under both continuous and pulsed light is the same: Mn excitation that leads to the inhibition of electron donation from OEC to P680+. Under laser-pulse-illumination, another Mn-mediated inhibitory photoreaction occurs within the duration of the same pulse, whereas under continuous light, secondary damage is chlorophyll mediated. A mathematical model based on the Mn hypothesis was found to explain photoinhibition under continuous light, under flash illumination and under the combination of these two.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis examines the local and regional scale determinants of biodiversity patterns using existing species and environmental data. The research focuses on agricultural environments that have experienced rapid declines of biodiversity during past decades. Existing digital databases provide vast opportunities for habitat mapping, predictive mapping of species occurrences and richness and understanding the speciesenvironment relationships. The applicability of these databases depends on the required accuracy and quality of the data needed to answer the landscape ecological and biogeographical questions in hand. Patterns of biodiversity arise from confounded effects of different factors, such as climate, land cover and geographical location. Complementary statistical approaches that can show the relative effects of different factors are needed in biodiversity analyses in addition to classical multivariate models. Better understanding of the key factors underlying the variation in diversity requires the analyses of multiple taxonomic groups from different perspectives, such as richness, occurrence, threat status and population trends. The geographical coincidence of species richness of different taxonomic groups can be rather limited. This implies that multiple geographical regions should be taken into account in order to preserve various groups of species. Boreal agricultural biodiversity and in particular, distribution and richness of threatened species is strongly associated with various grasslands. Further, heterogeneous agricultural landscapes characterized by moderate field size, forest patches and non-crop agricultural habitats enhance the biodiversity of rural environments. From the landscape ecological perspective, the major threats to Finnish agricultural biodiversity are the decline of connected grassland habitat networks, and general homogenization of landscape structure resulting from both intensification and marginalization of agriculture. The maintenance of key habitats, such as meadows and pastures is an essential task in conservation of agricultural biodiversity. Furthermore, a larger landscape context should be incorporated in conservation planning and decision making processes in order to respond to the needs of different species and to maintain heterogeneous rural landscapes and viable agricultural diversity in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, different genetic tools are used to investigate both natural variation and speciation in the Ficedula flycatcher system: pied (Ficedula hypoleuca) and collared (F. albicollis) flycatchers. The molecular evolution of a gene involved in postnatal body growth, GH, has shown high degree of conservation at the mature protein between birds and mammals, whereas the variation observed in its signal peptide seems to be adaptive in pied flycatcher (I & II). Speciation is the process by which reproductive barriers to gene flow evolve between populations, and understanding the mechanisms involved in pre- and post-zygotic isolation have been investigated in Ficedula flycatchers. The Z chromosome have been suggested to be the hotspot for genes involved in speciation, thus sequencing of 13 Z-linked coding genes from the two species in allopatry and sympatry have been conducted (III). Surprisingly, the majority of Z-linked genes seemed to be highly conserved, suggesting instead a potential involvement of regulatory regions. Previous studies have shown that genes involved in hybrid fitness, female preferences and male plumage colouration are sex-linked. Hence, three pigmentation genes have been investigated: MC1R, AGRP, and TYRP1. Of these three genes, TYRP1 was identified as a strong candidate to be associated with black-brown plumage variation in sympatric populations, and hence is a strong candidate for a gene contributing to pre-zygotic isolation (IV). In sympatric areas, where pied and collared flycatchers have overlapping breeding areas, hybridization sometimes occurs leading to the production of unfit hybrids. By using a proteomic approach a novel expression pattern in hybrids was revealed compared to the parental species (V) and differentially expressed proteins subsequently identified by sequence similarity (VI). In conclusion, the Z chromosome appears to play an important role in flycatcher speciation, but probably not at the coding level. In addition the novel expression patterns might give new insights into the maladaptive hybrids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although abundant in the number of individuals, the Atlantic salmon may be considered as a threatened species in many areas of its native distribution range. Human activities such as building of power plant dams, offshore overfishing, pollution, clearing of riverbeds for timber floating and badly designed stocking regimes have diminished the distribution of Atlantic salmon. As a result of this, many of the historical populations both in Europe and northern America have gone extinct or are severely depressed. In fact, only 1% of Atlantic salmon existing today are of natural origin, the rest being farmed salmon. All of this has lead to a vast amount of research and many restoration programmes aiming to bring Atlantic salmon back to rivers from where it has vanished. However, many of the restoration programmes conducted thus far have been unsuccessful due to inadequate scientific research or lack of its implementation, highlighting the fact that more research is needed to fully understand the biology of this complex species. The White and Barents Seas in northwest Russia are among the last regions in Europe where Atlantic salmon populations are still stable, thus forming an important source of biodiversity for the entire European region. Salmon stocks from this area are also of immense economic and social importance for the local people in the form of fishing tourism. The main aim of this thesis was to elucidate the post-glacial history and population genetic structure of north European and particularly northwest Russian Atlantic salmon, both of which are aspects of great importance for the management and conservation of the species. Throughout the whole thesis, these populations were studied by utilizing microsatellites as the main molecular tool. One of the most important discoveries of the thesis was the division of Atlantic salmon from the White and Barents Seas into four separate clusters, which has not been observed in previous studies employing nuclear markers although is supported by mtDNA studies. Populations from the western Barents Sea clustered together with the northeast Atlantic populations into a clearly distinguishable group while populations from the White Sea and eastern Barents Sea were separated into three additional groups. This has important conservation implications as this thesis clearly indicates that conservation of populations from all of the observed clusters is warranted in order to conserve as much of the genetic diversity as possible in this area. The thesis also demonstrates how differences in population life histories within a species, migratory behaviour in this case, and in their phylogeographic origin affect the genetic characteristics of populations, namely diversity and divergence levels. The anadromous populations from the Atlantic Ocean, White Sea and Barents Sea possessed higher levels of genetic diversity than the anadromous populations form the Baltic Sea basin. Among the non-anadromous populations the result was the opposite: the Baltic freshwater populations were more variable. This emphasises the importance of taking the life history of a population into consideration when developing conservation strategies: due to the limited possibilities for new genetic diversity to be generated via gene flow, it is expected that freshwater Atlantic salmon populations would be more vulnerable to extinction following a population crash and thus deserve a high conservation status. In the last chapter of this thesis immune relevant marker loci were developed and screened for signatures of natural selection along with loci linked to genes with other functions or no function at all. Also, a novel landscape genomics method, which combines environmental information with molecular data, was employed to investigate whether immune relevant markers displayed significant correlations to various environmental variables more frequently than other loci. Indications of stronger selection pressure among immune-relevant loci compared to non-immune relevant EST-linked loci was found but further studies are needed to evaluate whether it is a common phenomenon in Atlantic salmon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of my thesis is to assess mechanisms of ecological community control in macroalgal communities in the Baltic Sea. In the top-down model, predatory fish feed on invertebrate mesograzers, releasing algae partly from grazing pressure. Such a reciprocal relationship is called trophic cascade. In the bottom-up model, nutrients increase biomass in the food chain. The nutrients are first assimilated by algae and, via food chain, increase also abundance of grazers and predators. Previous studies on oceanic shores have described these two regulative mechanisms in the grazer - alga link, but how they interact in the trophic cascades from fish to algae is still inadequately known. Because the top-down and bottom-up mechanisms are predicted to depend on environmental disturbances, such as wave stress and light, I have studied these models at two distinct water depths. There are five factorial field experiments behind the thesis, which were all conducted in the Finnish Archipelago Sea. In all the experiments, I studied macroalgal colonization - either density, filament length or biomass - on submerged colonization substrates. By excluding predatory fish and mesograzers from the algal communities, the studies compared the strength of the top-down control to natural algal communities. A part of the experimental units were, in addition, exposed to enriched nitrogen and phosphorus concentrations, which enabled testing of bottom-up control. These two models of community control were further investigated in shallow (<1 m) and deep (ca. 3 m) water. Moreover, the control mechanisms were also expected to depend on grazer species. Therefore different grazer species were enclosed into experimental units and their impacts on macroalgal communities were followed specifically. The community control in the Baltic rocky shores was found to follow theoretical predictions, which have not been confirmed by field studies before. Predatory fish limited grazing impact, which was seen as denser algal communities and longer algal filaments. Nutrient enrichment increased density and filament length of annual algae and, thus, changed the species composition of the algal community. The perennial alga Fucus vesiculosusA and the red alga Ceramium tenuicorne suffered from the increased nutrient availabilities. The enriched nutrient conditions led to denser grazer fauna, thereby causing strong top-down control over both the annual and perennial macroalgae. The strength of the top-down control seemed to depend on the density and diversity of grazers and predators as well as on the species composition of macroalgal assemblages. The nutrient enrichment led to, however, weaker limiting impact of predatory fish on grazer fauna, because fish stocks did not respond as quickly to enhanced resources in the environment as the invertebrate fauna. According to environmental stress model, environmental disturbances weaken the top-down control. For example, on a wave-exposed shore, wave stress causes more stress to animals close to the surface than deeper on the shore. Mesograzers were efficient consumers at both the depths, while predation by fish was weaker in shallow water. Thus, the results supported the environmental stress model, which predicts that environmental disturbance affects stronger the higher a species is in the food chain. This thesis assessed the mechanisms of community control in three-level food chains and did not take into account higher predators. Such predators in the Baltic Sea are, for example, cormorant, seals, white-tailed sea eagle, cod and salmon. All these predatory species were recently or are currently under intensive fishing, hunting and persecution, and their stocks have only recently increased in the region. Therefore, it is possible that future densities of top predators may yet alter the strengths of the controlling mechanisms in the Baltic littoral zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Construction of multiple sequence alignments is a fundamental task in Bioinformatics. Multiple sequence alignments are used as a prerequisite in many Bioinformatics methods, and subsequently the quality of such methods can be critically dependent on the quality of the alignment. However, automatic construction of a multiple sequence alignment for a set of remotely related sequences does not always provide biologically relevant alignments.Therefore, there is a need for an objective approach for evaluating the quality of automatically aligned sequences. The profile hidden Markov model is a powerful approach in comparative genomics. In the profile hidden Markov model, the symbol probabilities are estimated at each conserved alignment position. This can increase the dimension of parameter space and cause an overfitting problem. These two research problems are both related to conservation. We have developed statistical measures for quantifying the conservation of multiple sequence alignments. Two types of methods are considered, those identifying conserved residues in an alignment position, and those calculating positional conservation scores. The positional conservation score was exploited in a statistical prediction model for assessing the quality of multiple sequence alignments. The residue conservation score was used as part of the emission probability estimation method proposed for profile hidden Markov models. The results of the predicted alignment quality score highly correlated with the correct alignment quality scores, indicating that our method is reliable for assessing the quality of any multiple sequence alignment. The comparison of the emission probability estimation method with the maximum likelihood method showed that the number of estimated parameters in the model was dramatically decreased, while the same level of accuracy was maintained. To conclude, we have shown that conservation can be successfully used in the statistical model for alignment quality assessment and in the estimation of emission probabilities in the profile hidden Markov models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the past few years, a considerable number of research articles have been published relating to the structure and function of the major photosynthetic protein complexes, photosystem (PS) I, PSII, cytochrome (Cyt) b6f, and adenosine triphosphate (ATP) synthase. Sequencing of the Arabidopsis thaliana (Arabidopsis) genome together with several high-quality proteomics studies has, however, revealed that the thylakoid membrane network of plant chloroplasts still contains a number of functionally unknown proteins. These proteins may have a role as auxiliary proteins guiding the assembly, maintenance, and turnover of the thylakoid protein complexes, or they may be as yet unknown subunits of the photosynthetic complexes. Novel subunits are most likely to be found in the NAD(P)H dehydrogenase (NDH) complex, the structure and function of which have remained obscure in the absence of detailed crystallographic data, thus making this thylakoid protein complex a particularly interesting target of investigation. In this thesis, several novel thylakoid-associated proteins were identified by proteomics-based methods. The major goal of characterization of the stroma thylakoid associated polysome-nascent chain complexes was to determine the proteins that guide the dynamic life cycle of PSII. In addition, a large protein complex of ≥ 1,000 kDa, residing in the stroma thylakoid, was characterized in greater depth and it was found to be a supercomplex composed of the PSI and NDH complexes. A set of newly identified proteins from Arabidopsis thylakoids was subjected to detailed characterization using the reverse genetics approach and extensive biochemical and biophysical analysis. The role of the novel proteins, either as auxiliary proteins or subunits of the photosynthetic protein complexes, was revealed. Two novel thylakoid lumen proteins, TLP18.3 and AtCYP38, function as auxiliary proteins assisting specific steps of the assembly/repair of PSII. The role of the 10-kDa thylakoid lumen protein PsbR is related to the optimization of oxygen evolution of PSII by assisting the assembly of the PsbP protein. Two integral thylakoid membrane proteins, NDH45 and NDH48, are novel subunits of the chloroplast NDH complex. Finally, the thylakoid lumen immunophilin AtCYP20-2 is suggested to interact with the NDH complex, instead of PSII as was hypothesized earlier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Once the seed has germinated, the plant is forced to face all the environmental changes in its habitat. In order to survive, plants have evolved a number of different acclimation systems. The primary reaction behind plant growth and development is photosynthesis. Photosynthesis captures solar energy and converts it into chemical form. Photosynthesis in turn functions under the control of environmental cues, but is also affected by the growth, development, and metabolic state of a plant. The availability of solar energy fluctuates continuously, requiring non-stop adjustment of photosynthetic efficiency in order to maintain the balance between photosynthesis and the requirements and restrictions of plant metabolism. Tight regulation is required, not only to provide sufficient energy supply but also to prevent the damage caused by excess energy. The very first reaction of photosynthesis is splitting of water into the form of oxygen, hydrogen, and electrons. This most fundamental reaction of life is run by photosystem II (PSII), and the energy required for the reaction is collected by the light harvesting complex II (LHCII). Several proteins of the PSII-LHCII complex are reversibly phosphorylated according to the energy balance between photosynthesis and metabolism. Thylakoid protein phosphorylation has been under extensive investigation for over 30 years, yet the physiological role of phosphorylation remains elusive. Recently, the kinases behind the phosphorylation of PSII-LHCII proteins (STN7 and STN8) were identified and the knockout mutants of these kinases became available, providing powerful tools to elucidate the physiological role of PSII-LHCII phosphorylation. In my work I have used the stn7 and stn8 mutants in order to clarify the role of PSII-LHCII phosphorylation in regulation and protection of the photosynthetic machinery according to environmental cues. I show that STN7- dependent PSII-LHCII protein phosphorylation is required to balance the excitation energy distribution between PSII and PSI especially under low light intensities when the excitation energy transfer from LHC to PSII and PSI is efficient. This mechanism differs from traditional light quality-induced “state 1” – “state 2” transition and ensures fluent electron transfer from PSII to PSI under low light, yet having highest physiological relevance under fluctuating light intensity. STN8-dependent phosphorylation of PSII proteins, in turn, is required for fluent turn-over of photodamaged PSII complexes and has the highest importance upon prolonged exposure of the photosynthetic apparatus to excess light.