5 resultados para antimicrobial activity

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selostus: Monoterpeenit kasvinsuojelussa: erityisesti limoneenin vaikutus eri eliöryhmiin

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Työssä tutkittiin muurahais-, etikka- ja propionihapon sekä näiden johdannaisten teollisia sovelluskohteita. Työn tarkoituksena oli löytää muurahaishapolle tai sen johdannaisille potentiaalisia käyttökohteita etikka- ja propionihapon sekä näiden johdannaisten teollisista sovelluskohteista. Työssä on laaja kirjallisuuskatsaus, jossa käsitellään muurahais-, etikka- ja propionihapon kemiallisia ja fysikaalisia ominaisuuksia, ekologisia ja korroosiovaikutuksia sekä yleensä orgaanisten happojen antimikrobisia ominaisuuksia. Tämän lisäksi työssä esitellään tarkasteltavien happojen sekä happojohdannaisten markkinat teollisissa sovelluksissa Yhdysvalloissa, Länsi-Euroopassa ja Japanissa. Korvaavuuksien syventävän analyysin avulla pyrittiin löytämään ne sovelluskohteet muurahaishapolle tai sen johdannaisille, joissa ne voisivat olla hinnaltaan kilpailukykyisiä vastaavien etikka-ja propionihapposovellusten kanssa. Mahdollisen korvaavuuden rajaksi asetettiin5 000 tonnia sovelluskohdetta kohti. Kirjallisuustutkimuksen perusteella etikkahapon estereiden (asetaattiestereiden) käyttökohde liuottimien komponentteinavoisi olla potentiaalisin käyttökohde vastaaville muurahaishapon estereille (formiaattiestereille). Asetaattiestereitä on ennustettu käytettävän maailmalla 2 808 000 tonnia vuonna 2006. Niiden pääkäyttöalueet ovat liuottimina pintapäällysteissä kuten maaleissa, lakoissa sekä painomusteissa ja -väreissä. Toistaiseksi formiaattiestereitä on hyödynnetty vain muutamia satoja tonneja lähinnä lääketeollisuuden sovelluksissa välituotteena. Työssä tehtyjen alustavien laskelmien perusteella muurahaishapon esterit ovat hintatasoltaan kilpailukykyinen vaihtoehto vastaaville asetaattiestereille. Diplomityön kokeellisessa osassa etyyliformiaattia valmistettiin menestyksekkäästi laboratoriomittakaavassa. Toinen potentiaalinen uusi tuote on selluloosaformiaattikuitu (SF-kuitu). Selluloosa-asetaattikuitua käytettiin vuonna 2001 845 000 tonnia, josta 79 % kului savukefilttereiden valmistukseen. SF-kuitu on kirjallisuuden mukaan vaihtoehtoinen raaka-aine savukefilttereiden valmistukseen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Probiotic lactobacilli and bifidobacteria in the mouth – in vitro studies on saliva-mediated functions and acid production Probiotics are viable bacteria which, when used in adequate amounts, are beneficial to the health of the host. Although most often related to intestinal health, probiotic bacteria can be found also in the mouth after consumption of products that contain them. This study aimed at evaluating the oral effects of probiotic bacteria already in commercial use. In a series of in vitro studies, the oral colonisation potential of different probiotic bacteria, their acid production and potential saliva-mediated effects on oral microbial ecology were investigated. The latter included effects on the salivary pellicle, the adhesion of other bacteria, and the activation of the peroxidase system. Streptococcus mutans, Streptococcus gordonii, Aggregatibacter actinomycetemcomitans and Helicobacter pylori were used as bacterial indicators of the studied phenomena. There were significant differences between the probiotic strains in their colonisation potential. They all were acidogenic, although using different sugars and sugar alcohols. However, their acid production could be inhibited by the peroxidase system. Based on the results, it can be suggested that probiotic bacteria might influence the oral microbiota by different, partly species or strain-specific means. These include the inhibition of bacterial adhesion, modification of the enamel pellicle, antimicrobial activity, and activation of the peroxidase system. To conclude, probiotic strains differed from each other in their colonisation potential and other oral effects as evaluated in vitro. Both positive and potentially harmful effects were observed, but the significance of the perceived results needs to be further evaluated in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Driven by the global trend in the sustainable economy development and environmental concerns, the exploring of plant-derived biomaterials or biocomposites for potential biomedical and/or pharmaceutical applications has received tremendous attention. Therefore, the work of this thesis is dedicated to high-value and high-efficiency utilization of plant-derived materials, with the focus on cellulose and hemicelluloses in the field of biomedical applications in a novel biorefinery concept. The residual cellulose of wood processing waste, sawdust, was converted into cellulose nanofibrils (CNFs) with tunable surface charge density and geometric size through 2,2,6,6-tetramethylpiperidinyloxy (TEMPO)-mediated oxidation and mechanical defibrillation. The sawdust-based CNFs and its resultant free-standing films showed comparable or even better mechanical properties than those from a commercial bleached kraft pulp at the same condition, demonstrating the feasibility of producing CNFs and films thereof with outstanding mechanical properties from birch sawdust by a process incorporated into a novel biorefinery platform recovering also polymeric hemicelluloses for other applications. Thus, it is providing an efficient route to upgrade sawdust waste to valuable products. The surface charge density and geometric size of the CNFs were found to play key roles in the stability of the CNF suspension, as well as the gelling properties, swelling behavior, mechanical stiffness, morphology and microscopic structural properties, and biocompatibility of CNF-based materials (i.e. films, hydrogels, and aerogels). The CNFs with tunable surface chemistry and geometric size was found promising applications as transparent and tough barrier materials or as reinforcing additive for production of biocomposites. The CNFs was also applied as structural matrices for the preparation of biocomposites possessing electrical conductivity and antimicrobial activity by in situ polymerization and coating of polypyrrole, and incorporation of silver nanoparticles, which make the material possible for potential wound healing application. The CNF-based matrices (films, hydrogels, and aerogels) with tunable structural and mechanical properties and biocompatibility were further prepared towards an application as 3D scaffolds in tissue engineering. The structural and mechanical strength of the CNF matrices could be tuned by controlling the charge density of the nanocellulose, as well as the pH and temperature values of the hydrogel formation conditions. Biological tests revealed that the CNF scaffolds could promote the survival and proliferation of tumor cells, and enhance the transfection of exogenous DNA into the cells, suggesting the usefulness of the CNF-based 3D matrices in supporting crucial cellular processes during cell growth and proliferation. The CNFs was applied as host materials to incorporate biomolecules for further biomedical application. For example, to investigate how the biocompatibility of a scaffold is influenced by its mechanical and structural properties, these properties of CNF-based composite matrices were controlled by incorporation of different hemicelluloses (O-acetyl galactoglucomanan (GGM), xyloglucan (XG), and xylan) into CNF hydrogel networks in different ratios and using two different approaches. The charge density of the CNFs, the incorporated hemicellulose type and amount, and the swelling time of the hydrogels were found to affect the pore structure, the mechanical strength, and thus the cells growth in the composite hydrogel scaffolds. The mechanical properties of the composite hydrogels were found to have an influence on the cell viability during the wound healing relevant 3T3 fibroblast cell culture. The thusprepared CNF composite hydrogels may work as promising scaffolds in wound healing application to provide supporting networks and to promote cells adhesion, growth, and proliferation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tannins, typically segregated into two major groups, the hydrolyzable tannins (HTs) and the proanthocyanidins (PAs), are plant polyphenolic secondary metabolites found throughout the plant kingdom. On one hand, tannins may cause harmful nutritional effects on herbivores, for example insects, and hence they work as plants’ defense against plant-eating animals. On the other hand, they may affect positively some herbivores, such as mammals, for example by their antioxidant, antimicrobial, anti-inflammatory or anticarcinogenic activities. This thesis focuses on understanding the bioactivity of plant tannins, their anthelmintic properties and the tools used for the qualitative and quantitative analysis of this endless source of structural diversity. The first part of the experimental work focused on the development of ultra-high performance liquid chromatography−tandem mass spectrometry (UHPLC-MS/MS) based methods for the rapid fingerprint analysis of bioactive polyphenols, especially tannins. In the second part of the experimental work the in vitro activity of isolated and purified HTs and their hydrolysis product, gallic acid, was tested against egg hatching and larval motility of two larval developmental stages, L1 and L2, of a common ruminant gastrointestinal parasite, Haemonchus contortus. The results indicated clear relationships between the HT structure and the anthelmintic activity. The activity of the studied compounds depended on many structural features, including size, functional groups present in the structure, and the structural rigidness. To further understand tannin bioactivity on a molecular level, the interaction between bovine serum albumin (BSA), and seven HTs and epigallocatechin gallate was examined. The objective was to define the effect of pH on the formation on tannin–protein complexes and to evaluate the stability of the formed complexes by gel electrophoresis and MALDI-TOF-MS. The results indicated that more basic pH values had a stabilizing effect on the tannin–protein complexes and that the tannin oxidative activity was directly linked with their tendency to form covalently stabilized complexes with BSA at increased pH.