23 resultados para Zirconium doping
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Summary: Rhetoric in discussing social problems: The case of doping
Resumo:
Full contour monolithic zirconia restorations have shown an increased popularity in the dental field over the recent years, owing to its mechanical and acceptable optical properties. However, many features of the restoration are yet to be researched and supported by clinical studies to confirm its place among the other indirect restorative materials This series of in vitro studies aimed at evaluating and comparing the optical and mechanical properties, light cure irradiance, and cement polymerization of multiple monolithic zirconia material at variable thicknesses, environments, treatments, and stabilization. Five different monolithic zirconia materials, four of which were partially stabilized and one fully stabilized were investigated. The optical properties in terms of surface gloss, translucency parameter, and contrast ratio were determined via a reflection spectrophotometer at variable thicknesses, coloring, sintering method, and after immersion in an acidic environment. Light cure irradiance and radiant exposure were quantified through the specimens at variable thicknesses and the degree of conversion of two dual-cure cements was determined via Fourier Transform Infrared spectroscopy. Bi-axial flexural strength was evaluated to compare between the partially and fully stabilized zirconia prepared using different coloring and sintering methods. Surface characterization was performed using a scanning electron microscope and a spinning disk confocal microscope. The surface gloss and translucency of the zirconia investigated were brand and thickness dependent with the translucency values decreasing as the thickness increased. Staining decreased the translucency of the zirconia and enhanced surface gloss as well as the flexural strength of the fully stabilized zirconia but had no effect on partially stabilized zirconia. Immersion in a corrosive acid increased surface gloss and decreased the translucency of some zirconia brands. Zirconia thickness was inversely related to the amount of light irradiance, radiant exposure, and degree of monomer conversion. Type of sintering furnace had no effect on the optical and mechanical properties of zirconia. Monolithic zirconia maybe classified as a semi-translucent material that is well influenced by the thickness, limiting its use in the esthetic zones. Conventional acid-base reaction, autopolymerizing and dual-cure cements are recommended for its cementation. Its desirable mechanical properties give it a high potential as a restoration for posterior teeth. However, close monitoring with controlled clinical studies must be determined before any definite clinical recommendations can be drawn.
Resumo:
Kuparipinnan hapettuminen on viimevuosina ollut suosittu tutkimuskohde materiaalitieteissä kuparin laajan teollisuuskäytön vuoksi. Teollisuussovellusten, kuten suojaavien pintaoksidien kehittäminen vaatii kuitenkin syvällistä tuntemusta hapettumisprosessista ja toisaalta myös normaaliolosuhteissa materiaalissa esiintyvien hilavirheiden vaikutuksesta siihen. Tässä työssä keskitytäänkin tutkimaan juuri niitä mekanismeja, joilla erilaiset pintavirheet ja porrastettu pintarakenne vaikuttavathapen adsorptioprosessiin kuparipinnalla. Tutkimus on tehty käyttämällä laskennallisia menetelmiä sekä VASP- ja SIESTA-ohjelmistoja. Työssätutkittiin kemiallisia ja rakenteellisia virheitä Cu(100)-pinnalla, joka on reaktiivisin matalanMillerin indeksin pinta ja porrastetun pinnan tutkimuksessa käytettiin Cu(211)-pintaa, joka puolestaan on yksinkertainen, stabiili ja aiemmissa tutkimuksissa usein käytetty pintarakenne. Työssä tutkitut hilavirheet, adatomit, vähentävät molekyylin dissosiaatiota kuparipinnalla, kun taas vakanssit toimivat dissosiaation keskuksina. Kemiallisena epäpuhtautena käytetty hopeakerros ei estä kuparin hapettumista, sillä happi aiheuttaa mielenkiintoisen segregaatioilmiön, jossa hopeatyöntyy syvemmälle pinnassa jättäen kuparipinnan suojaamattomaksi. Porrastetulla pinnalla (100)-hollow on todennäköisin paikka molekyylin dissosiaatiolle, kun taas portaan bridge-paikka on suotuisin molekulaariselle adsorptiolle. Lisäksi kuparin steppipinnan todettiin olevan reaktiivisempi kuin tasaiset kuparipinnat.
Resumo:
Magnetic field dependencies of Hall coefficient and magnetoresistivity are investigated in classical and quantizing magnetic fields in p-Bi2Te3 crystals heavily doped with Sn grown by Czochralsky method. Magnetic field was parallel to the trigonal axis C3. Shubnikov-de Haas effect and quantum oscillations of the Hall coefficient were measured at temperatures 4.2 K and 11 K. On the basis of the magnetic field dependence of the Hall coefficient a method of estimation of the Hall factor and Hall mobility using the Drabble- Wolf six ellipsoid model is proposed. Shubnikov-de Haas effect and quantum oscillations of the Hall coefficient were observed at 4.2 K and 11 K. New evidence for the existence of the narrow band of Sn impurity states was shown. This band is partly filled by electrons and it is overlapping with the valence states of the light holes. Parameters of the impurity states, their energy ESn - 15 meV, band broadening ¿<< k0T and localization radius of the impuritystate R - 30 Å were obtained.
Resumo:
Zinc selenide is a prospective material for optoelectronics. The fabrication of ZnSebased light-emitting diodes is hindered by complexity of p-type doping of the component materials. The interaction between native and impurity defects, the tendency of doping impurity to form associative centres with native defects and the tendency to self-compensation are the main factors impeding effective control of the value and type of conductivity. The thesis is devoted to the study of the processes of interaction between native and impurity defects in zinc selenide. It is established that the Au impurity has the most prominent amphoteric properties in ZnSe among Cu, Ag and Au impurities, as it forms a great number of both Au; donors and Auz„ acceptors. Electrical measurements show that Ag and Au ions introduced into vacant sites of the Zn sublattice form simple single-charged Agz„+ and Auzn+ states with d1° electron configuration, while Cu ions can form both single-charged Cuz„ (d1) and double-charged Cuzr`+ (d`o) centres. Amphoteric properties of Ag and Au transition metals stimulated by time are found for the first time from both electrical and luminescent measurements. A model that explains the changes in electrical and luminescent parameters by displacement of Ag ions into interstitial sites due to lattice deformation forces is proposed. Formation of an Ag;-donor impurity band in ZnSe samples doped with Ag and stored at room temperature is also studied. Thus, the properties of the doped samples are modified due to large lattice relaxation during aging. This fact should be taken into account in optoelectronic applications of doped ZnSe and related compounds.
Resumo:
This thesis describes the development of advanced silicon radiation detectors and their characterization by simulations, used in the work for searching elementary particles in the European Organization for Nuclear Research, CERN. Silicon particle detectors will face extremely harsh radiation in the proposed upgrade of the Large Hadron Collider, the future high-energy physics experiment Super-LHC. The increase in the maximal fluence and the beam luminosity up to 1016 neq / cm2 and 1035 cm-2s-1 will require detectors with a dramatic improvement in radiation hardness, when such a fluence will be far beyond the operational limits of the present silicon detectors. The main goals of detector development concentrate on minimizing the radiation degradation. This study contributes mainly to the device engineering technology for developing more radiation hard particle detectors with better characteristics. Also the defect engineering technology is discussed. In the nearest region of the beam in Super-LHC, the only detector choice is 3D detectors, or alternatively replacing other types of detectors every two years. The interest in the 3D silicon detectors is continuously growing because of their many advantages as compared to conventional planar detectors: the devices can be fully depleted at low bias voltages, the speed of the charge collection is high, and the collection distances are about one order of magnitude less than those of planar technology strip and pixel detectors with electrodes limited to the detector surface. Also the 3D detectors exhibit high radiation tolerance, and thus the ability of the silicon detectors to operate after irradiation is increased. Two parameters, full depletion voltage and electric field distribution, is discussed in more detail in this study. The full depletion of the detector is important because the only depleted area in the detector is active for the particle tracking. Similarly, the high electric field in the detector makes the detector volume sensitive, while low-field areas are non-sensitive to particles. This study shows the simulation results of full depletion voltage and the electric field distribution for the various types of 3D detectors. First, the 3D detector with the n-type substrate and partial-penetrating p-type electrodes are researched. A detector of this type has a low electric field on the pixel side and it suffers from type inversion. Next, the substrate is changed to p-type and the detectors having electrodes with one doping type and the dual doping type are examined. The electric field profile in a dual-column 3D Si detector is more uniform than that in the single-type column 3D detector. The dual-column detectors are the best in radiation hardness because of their low depletion voltages and short drift distances.
Resumo:
Tässä diplomityössä tutkittiin painetun paperin ja siitä fenoliformaldehydihartsilla impregnoimalla valmistetun pinnoituskalvon UV-stabiilisuuden parantamis-mahdollisuuksia. Työn kirjallisuusosassa käsitellään painetun pinnoituskalvon valmistusprosessia ja painatuksen UV-valonkestoon vaikuttavia tekijöitä. Painovärin pigmentti, sen määrä ja käsittely, painovärin sideaine sekä fenoliformaldehydihartsi ja sen lisäaineet vaikuttavat pinnoitetun betonoimisvanerin säänkesto-ominaisuuksiin. Erilaisilla epäorgaanisilla valkoisilla pigmenteillä ja kidemuodoilla on erilainen UV-valonkesto ja taitekerroin. Päällystämällä titaanidioksidi esimerkiksi alumiini- tai zirkoniumoksideilla sen UV-valonkestoa voidaan parantaa merkittävästi. UV-hajoaminen voidaan havaita painetun pinnoitteen liituuntumisena. Liituuntumista voidaan pitää veden ja hapen välisenä reaktiona, jota titaanidioksidi ja UV-säteily katalysoivat. Sen takia myös muiden valkoisten epäorgaanisten pigmenttien ominaisuuksia ja käyttöä selvitettiin. Kokeissa käytettiin yhdeksää eri painoväriä, kahta eri paksuista paperia ja kahta eri tyyppistä hartsia. Painovärejä ohennettiin vedellä ja paperin painopuolta vaihdeltiin. Kaikissa painatuksissa käytettiin kolmea eri rasterointiasteen laattaa, jolloin painovärin määrää paperissa saatiin vähennettyä. Painetuista papereista mitattiin densiteetti, värimäärä, pisara-absorptio vedellä ja kontaktikulma hartsilla. Myös painovärin tunkeumaa selvitettiin paperin poikkileikeistä tehtyjen SEM-kuvien avulla. Painetut paperit impregnoitiin fenoliformaldehydihartsilla kalvoksi. Pinnoituskalvot puristettiin vanerin pinnalle laboratoriopuristimella. Koekappaleet altistettiin UV-valolle, sateelle ja pakkaselle sääkaapissa 400 h ajan, mikä vastaa noin 1,5 vuotta ulkona Suomen oloissa. Kappaleista mitattiin kiilto, värinmuutos ja liituuntuminen. Pinnoitteen liituuntumista tapahtui vähiten niissä koepisteissä, joissa painatus oli tehty 30 % rasteroidulla laatallaSäänkestävä TiO2 osoittautui hyväksi, mutta myös ZnO-pigmentillä saatiin hyviä tuloksia. ZnO-koepisteessä liituuntumisreaktio ei ole niin voimakkaasti katalysoitu kuin TiO2-koepisteissä. Paksun paperin painatuspuolella näytti olevan merkitystä säänkestoon. Huopapuolelle painettuna pinnoitteen liituuntuminen oli vähäisempää
Resumo:
Interest to hole-doped mixed-valence manganite perovskites is connected to the ‘colossal’ magnetoresistance. This effect or huge drop of the resistivity, ρ, in external magnetic field, B, attains usually the maximum value near the ferromagnetic Curie temperature, TC. In this thesis are investigated conductivity mechanisms and magnetic properties of the manganite perovskite compounds LaMnO3+, La1-xCaxMnO3, La1-xCaxMn1-yFeyO3 and La1- xSrxMn1-yFeyO3. When the present work was started the key role of the phase separation and its influence on the properties of the colossal magnetoresistive materials were not clear. Our main results are based on temperature dependencies of the magnetoresistance and magnetothermopower, investigated in the temperature interval of 4.2 - 300 K in magnetic fields up to 10 T. The magnetization was studied in the same temperature range in weak (up to 0.1 T) magnetic fields. LaMnO3+δ is the parent compound for preparation of the hole-doped CMR materials. The dependences of such parameters as the Curie temperature, TC, the Coulomb gap, Δ, the rigid gap, γ, and the localization radius, a, on pressure, p, are observed in LaMnO3+δ. It has been established that the dependences above can be interpreted by increase of the electron bandwidth and decrease of the polaron potential well when p is increased. Generally, pressure stimulates delocalization of the electrons in LaMnO3+δ. Doping of LaMnO3 with Ca, leading to La1-xCaxMnO3, changes the Mn3+/Mn4+ ratio significantly and brings an additional disorder to the crystal lattice. Phase separation in a form of mixture of the ferromagnetic and the spin glass phases was observed and investigated in La1- xCaxMnO3 at x between 0 and 0.4. Influence of the replacement of Mn by Fe is studied in La0.7Ca0.3Mn1−yFeyO3 and La0.7Sr0.3Mn1−yFeyO3. Asymmetry of the soft Coulomb gap and of the rigid gap in the density of localized states, small shift of the centre of the gaps with respect to the Fermi level and cubic asymmetry of the density of states are obtained in La0.7Ca0.3Mn1−yFeyO3. Damping of TC with y is connected to breaking of the double-exchange interaction by doping with Fe, whereas the irreversibility and the critical behavior of the magnetic susceptibility are determined by the phase separation and the frustrated magnetic state of La0.7Sr0.3Mn1−yFeyO3.
Resumo:
Kirjallisuusarvostelu
Resumo:
Persistent luminescence materials can store energy from solar radiation or artificial lighting and release it over a period of several hours without a continuous excitation source. These materials are widely used to improve human safety in emergency and traffic signalization. They can also be utilized in novel applications including solar cells, medical diagnostics, radiation detectors and structural damage sensors. The development of these materials is currently based on methods based on trial and error. The tailoring of new materials is also hindered by the lack of knowledge on the role of their intrinsic and extrinsic lattice defects in the appropriate mechanisms. The goal of this work was to clarify the persistent luminescence mechanisms by combining ab initio density functional theory (DFT) calculations with selected experimental methods. The DFT approach enables a full control of both the nature of the defects and their locations in the host lattice. The materials studied in the present work, the distrontium magnesium disilicate (Sr2MgSi2O7) and strontium aluminate (SrAl2O4) are among the most efficient persistent luminescence hosts when doped with divalent europium Eu2+ and co-doped with trivalent rare earth ions R3+ (R: Y, La-Nd, Sm, Gd-Lu). The polycrystalline materials were prepared with the solid state method and their structural and phase purity was confirmed by X-ray powder diffraction. Their local crystal structure was studied by high-resolution transmission electron microscopy. The crystal and electronic structure of the nondoped as well as Eu2+, R2+/3+ and other defect containing materials were studied using DFT calculations. The experimental trap depths were obtained using thermoluminescence (TL) spectroscopy. The emission and excitation of Sr2MgSi2O7:Eu2+,Dy3+ were also studied. Significant modifications in the local crystal structure due to the Eu2+ ion and lattice defects were found by the experimental and DFT methods. The charge compensation effects induced by the R3+ co-doping further increased the number of defects and distortions in the host lattice. As for the electronic structure of Sr2MgSi2O7 and SrAl2O4, the experimental band gap energy of the host materials was well reproduced by the calculations. The DFT calculated Eu2+ and R2+/3+ 4fn as well as 4fn-15d1 ground states in the Sr2MgSi2O7 band structure provide an independent verification for an empirical model which is constructed using rather sparse experimental data for the R3+ and especially the R2+ ions. The intrinsic and defect induced electron traps were found to act together as energy storage sites contributing to the materials’ efficient persistent luminescence. The calculated trap energy range agreed with the trap structure of Sr2MgSi2O7 obtained using TL measurements. More experimental studies should be carried out for SrAl2O4 to compare with the DFT calculations. The calculated and experimental results show that the electron traps created by both the rare earth ions and vacancies are modified due to the defect aggregation and charge compensation effects. The relationships between this modification and the energy storage properties of the solid state materials are discussed.
Resumo:
Kirjallisuusarvostelu
Resumo:
Atomic structure of ZrO2 and B2O3 was investigated in this work. New data under extreme conditions (T = 3100 K) was obtained for the liquid ZrO2 structure. A fractional number of boron was investigated for glassy structure of B2O3. It was shown that it is possible to obtain an agreement for the fractional number between NMR and DFT techniques using a suitable initial configuration.