5 resultados para X-RAYS: GALAXIES: CLUSTERS

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: BL Lacs are the most numerous extragalactic objects which are detected in Very High Energy (VHE) gamma-rays band. They are a subclass of blazars. Large flux variability amplitude, sometimes happens in very short time scale, is a common characteristic of them. Significant optical polarization is another main characteristics of BL Lacs. BL Lacs' spectra have a continuous and featureless Spectral Energy Distribution (SED) which have two peaks. Among 1442 BL Lacs in the Roma-BZB catalogue, only 51 are detected in VHE gamma-rays band. BL Lacs are most numerous (more than 50% of 514 objects) objects among the sources that are detected above 10 GeV by FERMI-LAT. Therefore, many BL Lacs are expected to be discovered in VHE gamma-rays band. However, due to the limitation on current and near future technology of Imaging Air Cherenkov Telescope, astronomers are forced to predict whether an object emits VHE gamma-rays or not. Some VHE gamma-ray prediction methods are already introduced but still are not confirmed. Cross band correlations are the building blocks of introducing VHE gamma-rays prediction method. Aims: We will attempt to investigate cross band correlations between flux energy density, luminosity and spectral index of the sample. Also, we will check whether recently discovered MAGIC J2001+435 is a typical BL Lac. Methods: We select a sample of 42 TeV BL Lacs and collect 20 of their properties within five energy bands from literature and Tuorla blazar monitoring program database. All of the data are synchronized to be comparable to each other. Finally, we choose 55 pair of datasets for cross band correlations finding and investigating whether there is any correlation between each pair. For MAGIC J2001+435 we analyze the publicly available SWIFT-XRT data, and use the still unpublished VHE gamma-rays data from MAGIC collaboration. The results are compared to the other sources of the sample. Results: Low state luminosity of multiple detected VHE gamma-rays is strongly correlated luminosities in all other bands. However, the high state does not show such strong correlations. VHE gamma-rays single detected sources have similar behaviour to the low state of multiple detected ones. Finally, MAGIC J2001+435 is a typical TeV BL Lac. However, for some of the properties this source is located at the edge of the whole sample (e.g. in terms of X-rays flux). Keywords: BL Lac(s), Population study, Correlations finding, Multi wavelengths analysis, VHE gamma-rays, gamma-rays, X-rays, Optical, Radio

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioactive glasses (BGs) form a group of synthetic, surface-active, composition-dependent, silica-based biomaterials with osteoconductive, osteopromotive, and even angiogenic, as well as antibacterial, properties. A national interdisciplinary research group, within the Combio Technology Program (2003–2007), developed a porous load-bearing composite for surgical applications made of BG 1–98 and polymer fibers. The pre-clinical part of this thesis focused on the in vitro and in vivo testing of the composite materials in a rabbit femur and spinal posterolateral fusion model. The femur model failed to demonstrate the previously seen positive effect of BG 1–98 on osteogenesis, probably due to the changed resorption properties of BG in the form of fibers. The spine study was terminated early due to adverse events. In vitro cultures showed the growth inhibition of human mesenchymal stems next to BG 1–98 fibers and radical pH changes. A prospective, long-term, follow-up study was conducted on BG–S53P4 and autogenous bone used as bone graft substitutes for instrumented posterolateral spondylodesis in the treatment of degenerative spondylolisthesis (n=17) and unstable burst fractures (n=10) during 1996–1998. The operative outcome was evaluated from X-rays and CT scans, and a clinical examination was also performed. On the BG side, a solid fusion was observed in the CT scans of 12 patients, and a partial fusion was found in 5 patients, the result being a total fusion rate in all fusion sites (n=41) 88% for levels L4/5 and L5/S1 in the spondylolisthesis group. In the spine fracture group, solid fusion was observed in five patients, and partial fusion was found in five resulting in a total fusion rate of 71% of all fusion sites (n=21). The pre-clinical results suggest that under certain conditions the physical form of BG can be more critical than its chemical composition when a clinical application is designed. The first long-term clinical results concerning the use of BG S53P4 as bone graft material in instrumented posterolateral spondylodesis seems to be a safe procedure, associated with a very low complication rate. BG S53P4 used as a stand-alone bone substitute cannot be regarded as being as efficient as AB in promoting solid fusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Solar Intensity X-ray and particle Spectrometer (SIXS) on board BepiColombo's Mercury Planetary Orbiter (MPO) will study solar energetic particles moving towards Mercury and solar X-rays on the dayside of Mercury. The SIXS instrument consists of two detector sub-systems; X-ray detector SIXS-X and particle detector SIXS-P. The SIXS-P subdetector will detect solar energetic electrons and protons in a broad energy range using a particle telescope approach with five outer Si detectors around a central CsI(Tl) scintillator. The measurements made by the SIXS instrument are necessary for other instruments on board the spacecraft. SIXS data will be used to study the Solar X-ray corona, solar flares, solar energetic particles, the Hermean magnetosphere, and solar eruptions. The SIXS-P detector was calibrated by comparing experimental measurement data from the instrument with Geant4 simulation data. Calibration curves were produced for the different side detectors and the core scintillator for electrons and protons, respectively. The side detector energy response was found to be linear for both electrons and protons. The core scintillator energy response to protons was found to be non-linear. The core scintillator calibration for electrons was omitted due to insufficient experimental data. The electron and proton acceptance of the SIXS-P detector was determined with Geant4 simulations. Electron and proton energy channels are clean in the main energy range of the instrument. At higher energies, protons and electrons produce non-ideal response in the energy channels. Due to the limited bandwidth of the spacecraft's telemetry, the particle measurements made by SIXS-P have to be pre-processed in the data processing unit of the SIXS instrument. A lookup table was created for the pre-processing of data with Geant4 simulations, and the ability of the lookup table to provide spectral information from a simulated electron event was analysed. The lookup table produces clean electron and proton channels and is able to separate protons and electrons. Based on a simulated solar energetic electron event, the incident electron spectrum cannot be determined from channel particle counts with a standard analysis method.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation presents studies on the environments of active galaxies. Paper I is a case study of a cluster of galaxies containing BL Lac object RGB 1745+398. We measured the velocity dispersion, mass, and richness of the cluster. This was one of the most thorough studies of the environments of a BL Lac object. Methods used in the paper could be used in the future for studying other clusters as well. In Paper II we studied the environments of nearby quasars in the Sloan Digital Sky Survey (SDSS). We found that quasars have less neighboring galaxies than luminous inactive galaxies. In the large-scale structure, quasars are usually located at the edges of superclusters or even in void regions. We concluded that these low-redshift quasars may have become active only recently because the galaxies in low-density environments evolve later to the phase where quasar activity can be triggered. In Paper III we extended the analysis of Paper II to other types of AGN besides quasars. We found that different types of AGN have different large-scale environments. Radio galaxies are more concentrated in superclusters, while quasars and Seyfert galaxies prefer low-density environments. Different environments indicate that AGN have different roles in galaxy evolution. Our results suggest that activity of galaxies may depend on their environment on the large scale. Our results in Paper III raised questions of the cause of the environment-dependency in the evolution of galaxies. Because high-density large-scale environments contain richer groups and clusters than the underdense environments, our results could reflect smaller-scale effects. In Paper IV we addressed this problem by studying the group and supercluster scale environments of galaxies together. We compared the galaxy populations in groups of different richnesses in different large-scale environments. We found that the large-scale environment affects the galaxies independently of the group richness. Galaxies in low-density environments on the large scale are more likely to be star-forming than those in superclusters even if they are in groups with the same richness. Based on these studies, the conclusion of this dissertation is that the large-scale environment affects the evolution of galaxies. This may be caused by different “speed” of galaxy evolution in low and high-density environments: galaxies in dense environments reach certain phases of evolution earlier than galaxies in underdense environments. As a result, the low-density regions at low redshifts are populated by galaxies in earlier phases of evolution than galaxies in high-density regions.