16 resultados para Weapons of Mass Destruction
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Gas-liquid mass transfer is an important issue in the design and operation of many chemical unit operations. Despite its importance, the evaluation of gas-liquid mass transfer is not straightforward due to the complex nature of the phenomena involved. In this thesis gas-liquid mass transfer was evaluated in three different gas-liquid reactors in a traditional way by measuring the volumetric mass transfer coefficient (kLa). The studied reactors were a bubble column with a T-junction two-phase nozzle for gas dispersion, an industrial scale bubble column reactor for the oxidation of tetrahydroanthrahydroquinone and a concurrent downflow structured bed.The main drawback of this approach is that the obtained correlations give only the average volumetric mass transfer coefficient, which is dependent on average conditions. Moreover, the obtained correlations are valid only for the studied geometry and for the chemical system used in the measurements. In principle, a more fundamental approach is to estimate the interfacial area available for mass transfer from bubble size distributions obtained by solution of population balance equations. This approach has been used in this thesis by developing a population balance model for a bubble column together with phenomenological models for bubble breakage and coalescence. The parameters of the bubble breakage rate and coalescence rate models were estimated by comparing the measured and calculated bubble sizes. The coalescence models always have at least one experimental parameter. This is because the bubble coalescence depends on liquid composition in a way which is difficult to evaluate using known physical properties. The coalescence properties of some model solutions were evaluated by measuring the time that a bubble rests at the free liquid-gas interface before coalescing (the so-calledpersistence time or rest time). The measured persistence times range from 10 msup to 15 s depending on the solution. The coalescence was never found to be instantaneous. The bubble oscillates up and down at the interface at least a coupleof times before coalescence takes place. The measured persistence times were compared to coalescence times obtained by parameter fitting using measured bubble size distributions in a bubble column and a bubble column population balance model. For short persistence times, the persistence and coalescence times are in good agreement. For longer persistence times, however, the persistence times are at least an order of magnitude longer than the corresponding coalescence times from parameter fitting. This discrepancy may be attributed to the uncertainties concerning the estimation of energy dissipation rates, collision rates and mechanisms and contact times of the bubbles.
Resumo:
A rigorous unit operation model is developed for vapor membrane separation. The new model is able to describe temperature, pressure, and concentration dependent permeation as wellreal fluid effects in vapor and gas separation with hydrocarbon selective rubbery polymeric membranes. The permeation through the membrane is described by a separate treatment of sorption and diffusion within the membrane. The chemical engineering thermodynamics is used to describe the equilibrium sorption of vapors and gases in rubbery membranes with equation of state models for polymeric systems. Also a new modification of the UNIFAC model is proposed for this purpose. Various thermodynamic models are extensively compared in order to verify the models' ability to predict and correlate experimental vapor-liquid equilibrium data. The penetrant transport through the selective layer of the membrane is described with the generalized Maxwell-Stefan equations, which are able to account for thebulk flux contribution as well as the diffusive coupling effect. A method is described to compute and correlate binary penetrant¿membrane diffusion coefficients from the experimental permeability coefficients at different temperatures and pressures. A fluid flow model for spiral-wound modules is derived from the conservation equation of mass, momentum, and energy. The conservation equations are presented in a discretized form by using the control volume approach. A combination of the permeation model and the fluid flow model yields the desired rigorous model for vapor membrane separation. The model is implemented into an inhouse process simulator and so vapor membrane separation may be evaluated as an integralpart of a process flowsheet.
Resumo:
Massaräätälöinti on tärkeä osa nykyaikaista tuotestrategiaa. Massaräätälöinti mahdollistaa asiakaskohtaisesti muokattujen tuotteiden valmistuksen massatuotannon tehokkuudella. Massaräätälöinti edellyttää laajamittaista tietojärjestelmien hyväksikäyttöä, niin räätälöityjen tuotteiden mallinnuksessa, tuotteistuksessa kuin ylläpidossakin. Diplomityössä käsittelen taustatekijöitä jotka ovat johtaneet massaräätälöinnin syntyyn ja yleistymiseen. Käsittelyssä ovat myös erilaiset tavat toteuttaa massaräätälöintiä ja tietojärjestelmät jota tukevat massaräätälöintiä. Diplomityön empiirisessä osassa tarkastellaan Nokia Networksin tapaa toteuttaa massaräätälöintiä sekä esitellään tärkeimmät tätä tukevat järjestelmät. Empiirisen osan painopiste on kuitenkin hyvin vahvasti keskittynyt yhteen tuoterakenteiden osaan, joka on aiheuttanut haasteita Nokia Networksin massaräätälöintikonseptille. Tämä tuoterakenteen osa on valjastettu moneen erilaiseen käyttöön, mikä aiheuttaa ongelmia tietojärjestelmissä ja prosesseissa joihin se on vaikuttamassa. Työn tarkoituksena on kartoittaa kaikki ne ongelmat joita tämä tuoterakenteen osa aiheuttaa sulavalle massaräätälöinnin toteuttamiselle, niin yleisesti kuin järjestelmä- ja prosessimielessäkin. Työ on tehty osana laajamittaista projektia. Projektin tarkoituksena on kehittää uusi ja joustavampi ratkaisu tuoterakenteisiin, mandollistaen asiakaskohtaisten räätälöityjen tuotteiden valmistamisen, niin että se sopii Nokia Networksin järjestelmä sekä prosessi ympäristöön.
Resumo:
Työn päätavoitteena on arvioida hissien automaattiovien usein toistuvien asiakaskohtaisesti räätälöityjen tuoteominaisuuksien vakioimisen kannattavuutta KONEen Hyvinkään tehtaalla. Työssä arvioidaan myös massaräätälöinnin periaatteiden soveltuvuutta erikoisovien toimitusprosessiin sekä toimintoperusteisen kustannustiedon tarpeellisuutta tuoteominaisuuksia koskevien päätösten teossa. Asiakaskohtaisesti räätälöity ovituotanto jaettiin kategorioihin, joiden volyymeja ja tuotemuutosten tekoon käytettyjä suunnittelutuntimääriä analysoimalla selvitettiin, muodostaako jokin räätälöitävä tuoteominaisuus riittävän suuren kappalemääräisen kysynnän tai suunnittelutuntien kulutuskohteen, jotta ominaisuuden vakiointi olisi kannattavaa. Ovien kustannusrakenne-esimerkkien avulla selvitettiin myös suunnittelun osuus kokonaiskustannuksista. Analyysien perusteella todettiin asiakaskohtaisten muutosten olevan hajanaisia ja vain muutaman ominaisuuden osalta muodostuvan tarpeeksi suuri ja yhtenäinen kokonaisuus, joka olisi taloudellisesti kannattavaavakioida. Monimutkaisen tuoterakenteen vuoksi massaräätälöinnin opit eivät ole suoraan kopioitavissa hissien erikoisovien toimitusprosessiin, mutta sisältävät hyödyllisiä toimintamalleja prosessin kehittämiseen.
Resumo:
The purpose of this study was to investigate some important features of granular flows and suspension flows by computational simulation methods. Granular materials have been considered as an independent state ofmatter because of their complex behaviors. They sometimes behave like a solid, sometimes like a fluid, and sometimes can contain both phases in equilibrium. The computer simulation of dense shear granular flows of monodisperse, spherical particles shows that the collisional model of contacts yields the coexistence of solid and fluid phases while the frictional model represents a uniform flow of fluid phase. However, a comparison between the stress signals from the simulations and experiments revealed that the collisional model would result a proper match with the experimental evidences. Although the effect of gravity is found to beimportant in sedimentation of solid part, the stick-slip behavior associated with the collisional model looks more similar to that of experiments. The mathematical formulations based on the kinetic theory have been derived for the moderatesolid volume fractions with the assumption of the homogeneity of flow. In orderto make some simulations which can provide such an ideal flow, the simulation of unbounded granular shear flows was performed. Therefore, the homogeneous flow properties could be achieved in the moderate solid volume fractions. A new algorithm, namely the nonequilibrium approach was introduced to show the features of self-diffusion in the granular flows. Using this algorithm a one way flow can beextracted from the entire flow, which not only provides a straightforward calculation of self-diffusion coefficient but also can qualitatively determine the deviation of self-diffusion from the linear law at some regions nearby the wall inbounded flows. Anyhow, the average lateral self-diffusion coefficient, which was calculated by the aforementioned method, showed a desirable agreement with thepredictions of kinetic theory formulation. In the continuation of computer simulation of shear granular flows, some numerical and theoretical investigations were carried out on mass transfer and particle interactions in particulate flows. In this context, the boundary element method and its combination with the spectral method using the special capabilities of wavelets have been introduced as theefficient numerical methods to solve the governing equations of mass transfer in particulate flows. A theoretical formulation of fluid dispersivity in suspension flows revealed that the fluid dispersivity depends upon the fluid properties and particle parameters as well as the fluid-particle and particle-particle interactions.
Resumo:
This dissertation is based on four articles dealing with modeling of ozonation. The literature part of this considers some models for hydrodynamics in bubble column simulation. A literature review of methods for obtaining mass transfer coefficients is presented. The methods presented to obtain mass transfer are general models and can be applied to any gas-liquid system. Ozonation reaction models and methods for obtaining stoichiometric coefficients and reaction rate coefficients for ozonation reactions are discussed in the final section of the literature part. In the first article, ozone gas-liquid mass transfer into water in a bubble column was investigated for different pH values. A more general method for estimation of mass transfer and Henry’s coefficient was developed from the Beltrán method. The ozone volumetric mass transfer coefficient and the Henry’s coefficient were determined simultaneously by parameter estimation using a nonlinear optimization method. A minor dependence of the Henry’s law constant on pH was detected at the pH range 4 - 9. In the second article, a new method using the axial dispersion model for estimation of ozone self-decomposition kinetics in a semi-batch bubble column reactor was developed. The reaction rate coefficients for literature equations of ozone decomposition and the gas phase dispersion coefficient were estimated and compared with the literature data. The reaction order in the pH range 7-10 with respect to ozone 1.12 and 0.51 the hydroxyl ion were obtained, which is in good agreement with literature. The model parameters were determined by parameter estimation using a nonlinear optimization method. Sensitivity analysis was conducted using object function method to obtain information about the reliability and identifiability of the estimated parameters. In the third article, the reaction rate coefficients and the stoichiometric coefficients in the reaction of ozone with the model component p-nitrophenol were estimated at low pH of water using nonlinear optimization. A novel method for estimation of multireaction model parameters in ozonation was developed. In this method the concentration of unknown intermediate compounds is presented as a residual COD (chemical oxygen demand) calculated from the measured COD and the theoretical COD for the known species. The decomposition rate of p-nitrophenol on the pathway producing hydroquinone was found to be about two times faster than the p-nitrophenol decomposition rate on the pathway producing 4- nitrocatechol. In the fourth article, the reaction kinetics of p-nitrophenol ozonation was studied in a bubble column at pH 2. Using the new reaction kinetic model presented in the previous article, the reaction kinetic parameters, rate coefficients, and stoichiometric coefficients as well as the mass transfer coefficient were estimated with nonlinear estimation. The decomposition rate of pnitrophenol was found to be equal both on the pathway producing hydroquinone and on the path way producing 4-nitrocathecol. Comparison of the rate coefficients with the case at initial pH 5 indicates that the p-nitrophenol degradation producing 4- nitrocathecol is more selective towards molecular ozone than the reaction producing hydroquinone. The identifiability and reliability of the estimated parameters were analyzed with the Marcov chain Monte Carlo (MCMC) method. @All rights reserved. No part of the publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the author.
Resumo:
Chemical-looping combustion (CLC) is a novel combustion technology with inherent separation of the greenhouse gas CO2. The technique typically employs a dual fluidized bed system where a metal oxide is used as a solid oxygen carrier that transfers the oxygen from combustion air to the fuel. The oxygen carrier is looping between the air reactor, where it is oxidized by the air, and the fuel reactor, where it is reduced by the fuel. Hence, air is not mixed with the fuel, and outgoing CO2 does not become diluted by the nitrogen, which gives a possibility to collect the CO2 from the flue gases after the water vapor is condensed. CLC is being proposed as a promising and energy efficient carbon capture technology, since it can achieve both an increase in power station efficiency simultaneously with low energy penalty from the carbon capture. The outcome of a comprehensive literature study concerning the current status of CLC development is presented in this thesis. Also, a steady state model of the CLC process, based on the conservation equations of mass and energy, was developed. The model was used to determine the process conditions and to calculate the reactor dimensions of a 100 MWth CLC system with bunsenite (NiO) as oxygen carrier and methane (CH4) as fuel. This study has been made in Oxygen Carriers and Their Industrial Applications research project (2008 – 2011), funded by the Tekes – Functional Material program. I would like to acknowledge Tekes and participating companies for funding and all project partners for good and comfortable cooperation.
Resumo:
The age-old adage goes that nothing in this world lasts but change, and this generation has indeed seen changes that are unprecedented. Business managers do not have the luxury of going with the flow: they have to plan ahead, to think strategies that will meet the changing conditions, however stormy the weather seems to be. This demand raises the question of whether there is something a manager or planner can do to circumvent the eye of the storm in the future? Intuitively, one can either run on the risk of something happening without preparing, or one can try to prepare oneself. Preparing by planning for each eventuality and contingency would be impractical and prohibitively expensive, so one needs to develop foreknowledge, or foresight past the horizon of the present and the immediate future. The research mission in this study is to support strategic technology management by designing an effective and efficient scenario method to induce foresight to practicing managers. The design science framework guides this study in developing and evaluating the IDEAS method. The IDEAS method is an electronically mediated scenario method that is specifically designed to be an effective and accessible. The design is based on the state-of-the-art in scenario planning, and the product is a technology-based artifact to solve the foresight problem. This study demonstrates the utility, quality and efficacy of the artifact through a multi-method empirical evaluation study, first by experimental testing and secondly through two case studies. The construction of the artifact is rigorously documented as justification knowledge as well as the principles of form and function on the general level, and later through the description and evaluation of instantiations. This design contributes both to practice and foundation of the design. The IDEAS method contributes to the state-of-the-art in scenario planning by offering a light-weight and intuitive scenario method for resource constrained applications. Additionally, the study contributes to the foundations and methods of design by forging a clear design science framework which is followed rigorously. To summarize, the IDEAS method is offered for strategic technology management, with a confident belief that it will enable gaining foresight and aid the users to choose trajectories past the gales of creative destruction and off to a brighter future.
Resumo:
This study compares different electric propulsion systems. Results of the analysis of all the advantages and disadvantages of the different propulsion systems are given. This thesis estimates possibilities to apply different diesel-electric propulsion concepts for different vessel types. Small and medium size vessel’s power ranges are studied. The optimal delivery system is chosen. This choice is made on the base of detailed study of the concepts, electrical equipment market and comparison of mass, volume and efficiency parameters. In this thesis three marine generators are designed. They are: salient pole synchronous generator and two permanent magnet synchronous generators. Their electrical, dimensional, cost and efficiency parameters are compared. To understand all the benefits diagrams with these parameters are prepared. Possible benefits and money savings are estimated. As the result the advantages, disadvantages and boundary conditions for the permanent magnet synchronous generator application in marine electric-power systems are found out.
Resumo:
The mechanical properties of aluminium alloys are strongly influenced by the alloying elements and their concentration. In the case of aluminium alloy EN AW-6060 the main alloying elements are magnesium and silicon. The first goal of this thesis was to determine stability, repeatability and sensitivity as figures of merit of the in-situ melt identification technique. In this study the emissions from the laser welding process were monitored with a spectrometer. With the information produced by the spectrometer, quantitative analysis was conducted to determine the figures of merit. The quantitative analysis concentrated on magnesium and aluminium emissions and their relation. The results showed that the stability of absolute intensities was low, but the normalized magnesium emissions were quite stable. The repeatability of monitoring magnesium emissions was high (about 90 %). Sensitivity of the in-situ melt identification technique was also high. As small as 0.5 % change in magnesium content was detected by the spectrometer. The second goal of this study was to determine the loss of mass during deep penetration laser welding. The amount of magnesium in the material was measured before and after laser welding to determine the loss of magnesium. This study was conducted for aluminium alloy with nominal magnesium content of 0-10 % and for standard material EN AW-6060 that was welded with filler wire AlMg5. It was found that while the magnesium concentration in the material changed, the loss of magnesium remained fairly even. Also by feeding filler wire, the behaviour was similar. Thirdly, the reason why silicon had not been detected in the emission spectrum needed to be explained. Literature research showed that the amount of energy required for silicon to excite is considerably higher compared to magnesium. The energy input in the used welding process is insufficient to excite the silicon atoms.
Resumo:
The objective of this thesis is the development of a multibody dynamic model matching the observed movements of the lower limb of a skier performing the skating technique in cross-country style. During the construction of this model, the formulation of the equation of motion was made using the Euler - Lagrange approach with multipliers applied to a multibody system in three dimensions. The description of the lower limb of the skate skier and the ski was completed by employing three bodies, one representing the ski, and two representing the natural movements of the leg of the skier. The resultant system has 13 joint constraints due to the interconnection of the bodies, and four prescribed kinematic constraints to account for the movements of the leg, leaving the amount of degrees of freedom equal to one. The push-off force exerted by the skate skier was taken directly from measurements made on-site in the ski tunnel at the Vuokatti facilities (Finland) and was input into the model as a continuous function. Then, the resultant velocities and movement of the ski, center of mass of the skier, and variation of the skating angle were studied to understand the response of the model to the variation of important parameters of the skate technique. This allowed a comparison of the model results with the real movement of the skier. Further developments can be made to this model to better approximate the results to the real movement of the leg. One can achieve this by changing the constraints to include the behavior of the real leg joints and muscle actuation. As mentioned in the introduction of this thesis, a multibody dynamic model can be used to provide relevant information to ski designers and to obtain optimized results of the given variables, which athletes can use to improve their performance.
Resumo:
The aim of the study is to write the first comprehensive history of the Internationale Arbeiterhilfe (International Workers’ Relief) and its message of international solidarity during the Weimar Republic, 1921–1933. The Arbeiterhilfe was the Communist International’s (Comintern) primary international solidarity organisation of the time. The work is identified as a contribution to the transnational history of the interwar period as its main focus is not on governmental politics or intra-state relations, but is focused on the transnational world of an international organisation. The history of the Arbeiterhilfe provides the main springboard from which to write a contextually-based analysis of international solidarity during the Weimar Republic. The study highlights for the first time the importance of the German communist Willi Münzenberg (1889–1940), as the leader of the Arbeiterhilfe, in the history of international solidarity. The main question of this study is how an explicit use of language coupled with the visualisation and practices of solidarity were created through the Arbeiterhilfe. How was solidarity actually envisaged, organised and brought to life by the Arbeiterhilfe in Weimar Germany? How did its expressions of solidarity change over time? Throughout the thesis, the changing and complex character of solidarity is analysed. How was the Arbeiterhilfe’s message of solidarity created and changed in relation to the Comintern and the Soviet Union’s policies? How did the Arbeiterhilfe create a new culture of international solidarity thought film, cinema, illustrated newspapers and the organising of mass spectacles of international solidarity? The Arbeiterhilfe had its international headquarters in Berlin which functioned as the base, one could argue, for some of the inter-war period’s most spectacular solidarity campaigns. The Arbeiterhilfe constitutes a significant case study of an early international organisation as it was one of the first international organisations for global (albeit not universal) international solidarity which had unparalleled prospects to develop new transnational identifications and social ties. It could consequently be suggested that the Arbeiterhilfe in several ways could be perceived as a predecessor to several post-1945 transnational solidarity organisations and International Non-Governmental Organisations (INGOs).
Resumo:
Effective control and limiting of carbon dioxide (CO₂) emissions in energy production are major challenges of science today. Current research activities include the development of new low-cost carbon capture technologies, and among the proposed concepts, chemical combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) have attracted significant attention allowing intrinsic separation of pure CO₂ from a hydrocarbon fuel combustion process with a comparatively small energy penalty. Both CLC and CLOU utilize the well-established fluidized bed technology, but several technical challenges need to be overcome in order to commercialize the processes. Therefore, development of proper modelling and simulation tools is essential for the design, optimization, and scale-up of chemical looping-based combustion systems. The main objective of this work was to analyze the technological feasibility of CLC and CLOU processes at different scales using a computational modelling approach. A onedimensional fluidized bed model frame was constructed and applied for simulations of CLC and CLOU systems consisting of interconnected fluidized bed reactors. The model is based on the conservation of mass and energy, and semi-empirical correlations are used to describe the hydrodynamics, chemical reactions, and transfer of heat in the reactors. Another objective was to evaluate the viability of chemical looping-based energy production, and a flow sheet model representing a CLC-integrated steam power plant was developed. The 1D model frame was succesfully validated based on the operation of a 150 kWth laboratory-sized CLC unit fed by methane. By following certain scale-up criteria, a conceptual design for a CLC reactor system at a pre-commercial scale of 100 MWth was created, after which the validated model was used to predict the performance of the system. As a result, further understanding of the parameters affecting the operation of a large-scale CLC process was acquired, which will be useful for the practical design work in the future. The integration of the reactor system and steam turbine cycle for power production was studied resulting in a suggested plant layout including a CLC boiler system, a simple heat recovery setup, and an integrated steam cycle with a three pressure level steam turbine. Possible operational regions of a CLOU reactor system fed by bituminous coal were determined via mass, energy, and exergy balance analysis. Finally, the 1D fluidized bed model was modified suitable for CLOU, and the performance of a hypothetical 500 MWth CLOU fuel reactor was evaluated by extensive case simulations.
Resumo:
The thesis work models the squeezing of the tube and computes the fluid motion of a peristaltic pump. The simulations have been conducted by using COMSOL Multiphysics FSI module. The model is setup in axis symmetric with several simulation cases to have a clear understanding of the results. The model captures total displacement of the tube, velocity magnitude, and average pressure fluctuation of the fluid motion. A clear understanding and review of many mathematical and physical concepts are also discussed with their applications in real field. In order to solve the problems and work around the resource constraints, a thorough understanding of mass balance and momentum equations, finite element concepts, arbitrary Lagrangian-Eulerian method, one-way coupling method, two-way coupling method, and COMSOL Multiphysics simulation setup are understood and briefly narrated.
Resumo:
Torrefaction is moderate thermal treatment (~200-300 °C) of biomass in an inert atmosphere. The torrefied fuel offers advantages to traditional biomass, such as higher heating value, reduced hydrophilic nature, increased its resistance to biological decay, and improved grindability. These factors could, for instance, lead to better handling and storage of biomass and increased use of biomass in pulverized combustors. In this work, we look at several aspects of changes in the biomass during torrefaction. We investigate the fate of carboxylic groups during torrefaction and its dependency to equilibrium moisture content. The changes in the wood components including carbohydrates, lignin, extractable materials and ashforming matters are also studied. And at last, the effect of K on torrefaction is investigated and then modeled. In biomass, carboxylic sites are partially responsible for its hydrophilic characteristic. These sites are degraded to varying extents during torrefaction. In this work, methylene blue sorption and potentiometric titration were applied to measure the concentration of carboxylic groups in torrefied spruce wood. The results from both methods were applicable and the values agreed well. A decrease in the equilibrium moisture content at different humidity was also measured for the torrefied wood samples, which is in good agreement with the decrease in carboxylic group contents. Thus, both methods offer a means of directly measuring the decomposition of carboxylic groups in biomass during torrefaction as a valuable parameter in evaluating the extent of torrefaction. This provides new information to the chemical changes occurring during torrefaction. The effect of torrefaction temperature on the chemistry of birch wood was investigated. The samples were from a pilot plant at Energy research Center of the Netherlands (ECN). And in that way they were representative of industrially produced samples. Sugar analysis was applied to analyze the hemicellulose and cellulose content during torrefaction. The results show a significant degradation of hemicellulose already at 240 °C, while cellulose degradation becomes significant above 270 °C torrefaction. Several methods including Klason lignin method, solid state NMR and Py-GC-MS analyses were applied to measure the changes in lignin during torrefaction. The changes in the ratio of phenyl, guaiacyl and syringyl units show that lignin degrades already at 240 °C to a small extent. To investigate the changes in the extractives from acetone extraction during torrefaction, gravimetric method, HP-SEC and GC-FID followed by GC-MS analysis were performed. The content of acetone-extractable material increases already at 240 °C torrefaction through the degradation of carbohydrate and lignin. The molecular weight of the acetone-extractable material decreases with increasing the torrefaction temperature. The formation of some valuable materials like syringaresinol or vanillin is also observed which is important from biorefinery perspective. To investigate the change in the chemical association of ash-forming elements in birch wood during torrefaction, chemical fractionation was performed on the original and torrefied birch samples. These results give a first understanding of the changes in the association of ashforming elements during torrefaction. The most significant changes can be seen in the distribution of calcium, magnesium and manganese, with some change in water solubility seen in potassium. These changes may in part be due to the destruction of carboxylic groups. In addition to some changes in water and acid solubility of phosphorous, a clear decrease in the concentration of both chlorine and sulfur was observed. This would be a significant additional benefit for the combustion of torrefied biomass. Another objective of this work is studying the impact of organically bound K, Na, Ca and Mn on mass loss of biomass during torrefaction. These elements were of interest because they have been shown to be catalytically active in solid fuels during pyrolysis and/or gasification. The biomasses were first acid washed to remove the ash-forming matters and then organic sites were doped with K, Na, Ca or Mn. The results show that K and Na bound to organic sites can significantly increase the mass loss during torrefaction. It is also seen that Mn bound to organic sites increases the mass loss and Ca addition does not influence the mass loss rate on torrefaction. This increase in mass loss during torrefaction with alkali addition is unlike what has been found in the case of pyrolysis where alkali addition resulted in a reduced mass loss. These results are important for the future operation of torrefaction plants, which will likely be designed to handle various biomasses with significantly different contents of K. The results imply that shorter retention times are possible for high K-containing biomasses. The mass loss of spruce wood with different content of K was modeled using a two-step reaction model based on four kinetic rate constants. The results show that it is possible to model the mass loss of spruce wood doped with different levels of K using the same activation energies but different pre-exponential factors for the rate constants. Three of the pre-exponential factors increased linearly with increasing K content, while one of the preexponential factors decreased with increasing K content. Therefore, a new torrefaction model was formulated using the hemicellulose and cellulose content and K content. The new torrefaction model was validated against the mass loss during the torrefaction of aspen, miscanthus, straw and bark. There is good agreement between the model and the experimental data for the other biomasses, except bark. For bark, the mass loss of acetone extractable material is also needed to be taken into account. The new model can describe the kinetics of mass loss during torrefaction of different types of biomass. This is important for considering fuel flexibility in torrefaction plants.