4 resultados para Wavelet analysis

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this thesis is to study wavelets and their role in turbulence applications. Under scrutiny in the thesis is the intermittency in turbulence models. Wavelets are used as a mathematical tool to study the intermittent activities that turbulence models produce. The first section generally introduces wavelets and wavelet transforms as a mathematical tool. Moreover, the basic properties of turbulence are discussed and classical methods for modeling turbulent flows are explained. Wavelets are implemented to model the turbulence as well as to analyze turbulent signals. The model studied here is the GOY (Gledzer 1973, Ohkitani & Yamada 1989) shell model of turbulence, which is a popular model for explaining intermittency based on the cascade of kinetic energy. The goal is to introduce better quantification method for intermittency obtained in a shell model. Wavelets are localized in both space (time) and scale, therefore, they are suitable candidates for the study of singular bursts, that interrupt the calm periods of an energy flow through various scales. The study concerns two questions, namely the frequency of the occurrence as well as the intensity of the singular bursts at various Reynolds numbers. The results gave an insight that singularities become more local as Reynolds number increases. The singularities become more local also when the shell number is increased at certain Reynolds number. The study revealed that the singular bursts are more frequent at Re ~ 107 than other cases with lower Re. The intermittency of bursts for the cases with Re ~ 106 and Re ~ 105 was similar, but for the case with Re ~ 104 bursts occured after long waiting time in a different fashion so that it could not be scaled with higher Re.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Online paper web analysis relies on traversing scanners that criss-cross on top of a rapidly moving paper web. The sensors embedded in the scanners measure many important quality variables of paper, such as basis weight, caliper and porosity. Most of these quantities are varying a lot and the measurements are noisy at many different scales. The zigzagging nature of scanning makes it difficult to separate machine direction (MD) and cross direction (CD) variability from one another. For improving the 2D resolution of the quality variables above, the paper quality control team at the Department of Mathematics and Physics at LUT has implemented efficient Kalman filtering based methods that currently use 2D Fourier series. Fourier series are global and therefore resolve local spatial detail on the paper web rather poorly. The target of the current thesis is to study alternative wavelet based representations as candidates to replace the Fourier basis for a higher resolution spatial reconstruction of these quality variables. The accuracy of wavelet compressed 2D web fields will be compared with corresponding truncated Fourier series based fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coherent anti-Stokes Raman scattering is the powerful method of laser spectroscopy in which significant successes are achieved. However, the non-linear nature of CARS complicates the analysis of the received spectra. The objective of this Thesis is to develop a new phase retrieval algorithm for CARS. It utilizes the maximum entropy method and the new wavelet approach for spectroscopic background correction of a phase function. The method was developed to be easily automated and used on a large number of spectra of different substances.. The algorithm was successfully tested on experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coherent anti-Stokes Raman scattering (CARS) microscopy is rapidly developing into a unique microscopic tool in biophysics, biology and the material sciences. The nonlinear nature of CARS spectroscopy complicates the analysis of the received spectra. There were developed mathematical methods for signal processing and for calculations spectra. Fourier self-deconvolution is a special high pass FFT filter which synthetically narrows the effective trace bandwidth features. As Fourier self-deconvolution can effectively reduce the noise, which may be at a higher spatial frequency than the peaks, without losing peak resolution. The idea of the work is to experiment the possibility of using wavelet decomposition in spectroscopic for background and noise removal, and Fourier transformation for linenarrowing.