8 resultados para Volterra-Stietjes linear integral equations
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Vaatimus kuvatiedon tiivistämisestä on tullut entistä ilmeisemmäksi viimeisen kymmenen vuoden aikana kuvatietoon perustuvien sovellutusten myötä. Nykyisin kiinnitetään erityistä huomiota spektrikuviin, joiden tallettaminen ja siirto vaativat runsaasti levytilaa ja kaistaa. Aallokemuunnos on osoittautunut hyväksi ratkaisuksi häviöllisessä tiedontiivistämisessä. Sen toteutus alikaistakoodauksessa perustuu aallokesuodattimiin ja ongelmana on sopivan aallokesuodattimen valinta erilaisille tiivistettäville kuville. Tässä työssä esitetään katsaus tiivistysmenetelmiin, jotka perustuvat aallokemuunnokseen. Ortogonaalisten suodattimien määritys parametrisoimalla on työn painopisteenä. Työssä todetaan myös kahden erilaisen lähestymistavan samanlaisuus algebrallisten yhtälöiden avulla. Kokeellinen osa sisältää joukon testejä, joilla perustellaan parametrisoinnin tarvetta. Erilaisille kuville tarvitaan erilaisia suodattimia sekä erilaiset tiivistyskertoimet saavutetaan eri suodattimilla. Lopuksi toteutetaan spektrikuvien tiivistys aallokemuunnoksen avulla.
Resumo:
Työn tavoitteena oli toteuttaa simulointimalli, jolla pystytään tutkimaan kestomagnetoidun tahtikoneen aiheuttaman vääntömomenttivärähtelyn vaikutuksia sähkömoottoriin liitetyssä mekaniikassa. Tarkoitus oli lisäksi selvittää kuinka kyseinen simulointimalli voidaan toteuttaa nykyaikaisia simulointiohjelmia käyttäen. Saatujen simulointitulosten oikeellisuus varmistettiin tätä työtä varten rakennetulla verifiointilaitteistolla. Tutkittava rakenne koostui akselista, johon kiinnitettiin epäkeskotanko. Epäkeskotankoon kiinnitettiin massa, jonka sijaintia voitiin muunnella. Massan asemaa muuttamalla saatiin rakenteelle erilaisia ominaistaajuuksia. Epäkeskotanko mallinnettiin joustavana elementtimenetelmää apuna käyttäen. Mekaniikka mallinnettiin dynamiikan simulointiin tarkoitetussa ADAMS –ohjelmistossa, johon joustavana mallinnettu epäkeskotanko tuotiin ANSYS –elementtimenetelmäohjelmasta. Mekaniikan malli siirrettiin SIMULINK –ohjelmistoon, jossa mallinnettiin myös sähkökäyttö. SIMULINK –ohjelmassa mallinnettiin sähkökäyttö, joka kuvaa kestomagnetoitua tahtikonetta. Kestomagnetoidun tahtikoneen yhtälöt perustuvat lineaarisiin differentiaaliyhtälöihin, joihin hammasvääntömomentin vaikutus on lisätty häiriösignaalina. Sähkökäytön malli tuottaa vääntömomenttia, joka syötetään ADAMS –ohjelmistolla mallinnettuun mekaniikkaan. Mekaniikan mallista otetaan roottorin kulmakiihtyvyyden arvo takaisinkytkentänä sähkömoottorin malliin. Näin saadaan aikaiseksi yhdistetty simulointi, joka koostuu sähkötoimilaitekäytöstä ja mekaniikasta. Tulosten perusteella voidaan todeta, että sähkökäyttöjen ja mekaniikan yhdistetty simulointi on mahdollista toteuttaa valituilla menetelmillä. Simuloimalla saadut tulokset vastaavat hyvin mitattuja tuloksia.
Resumo:
A systematic averaging procedure has been derived in order to obtain an integral form of conservation equations for dispersed multiphase flow, especially applicable to fluidized beds. A similar averaging method is applied further to formulate macroscopic integral equations, which can be used in one-dimensional and macroscopic multi dimensional models. Circulating fluid bed hydrodynamics has been studied experimentally and both macroscopic and microscopic flow profiles have been measured in a cold model. As an application of the theory, the one dimensional model has been used to study mass and momentum conservation of gas and solid in a circulating fluid bed. Axial solid mixing has also been modelled by the one dimensional model and mixing parameters have been evaluated.
Resumo:
Learning from demonstration becomes increasingly popular as an efficient way of robot programming. Not only a scientific interest acts as an inspiration in this case but also the possibility of producing the machines that would find application in different areas of life: robots helping with daily routine at home, high performance automata in industries or friendly toys for children. One way to teach a robot to fulfill complex tasks is to start with simple training exercises, combining them to form more difficult behavior. The objective of the Master’s thesis work was to study robot programming with visual input. Dynamic movement primitives (DMPs) were chosen as a tool for motion learning and generation. Assuming a movement to be a spring system influenced by an external force, making this system move, DMPs represent the motion as a set of non-linear differential equations. During the experiments the properties of DMP, such as temporal and spacial invariance, were examined. The effect of the DMP parameters, including spring coefficient, damping factor, temporal scaling, on the trajectory generated were studied.
Resumo:
The aim of the thesis is to study the principles of the permanent magnet linear synchronous motor (PMLSM) and to develop a simulator model of direct force controlled PMLSM. The basic motor model is described by the traditional two-axis equations. The end effects, cogging force and friction model are also included into the final motor model. Direct thrust force control of PMLSM is described and modelled. The full system model is proven by comparison with the data provided by the motor manufacturer.
Resumo:
In this work we look at two different 1-dimensional quantum systems. The potentials for these systems are a linear potential in an infinite well and an inverted harmonic oscillator in an infinite well. We will solve the Schrödinger equation for both of these systems and get the energy eigenvalues and eigenfunctions. The solutions are obtained by using the boundary conditions and numerical methods. The motivation for our study comes from experimental background. For the linear potential we have two different boundary conditions. The first one is the so called normal boundary condition in which the wave function goes to zero on the edge of the well. The second condition is called derivative boundary condition in which the derivative of the wave function goes to zero on the edge of the well. The actual solutions are Airy functions. In the case of the inverted oscillator the solutions are parabolic cylinder functions and they are solved only using the normal boundary condition. Both of the potentials are compared with the particle in a box solutions. We will also present figures and tables from which we can see how the solutions look like. The similarities and differences with the particle in a box solution are also shown visually. The figures and calculations are done using mathematical software. We will also compare the linear potential to a case where the infinite wall is only on the left side. For this case we will also show graphical information of the different properties. With the inverted harmonic oscillator we will take a closer look at the quantum mechanical tunneling. We present some of the history of the quantum tunneling theory, its developers and finally we show the Feynman path integral theory. This theory enables us to get the instanton solutions. The instanton solutions are a way to look at the tunneling properties of the quantum system. The results are compared with the solutions of the double-well potential which is very similar to our case as a quantum system. The solutions are obtained using the same methods which makes the comparison relatively easy. All in all we consider and go through some of the stages of the quantum theory. We also look at the different ways to interpret the theory. We also present the special functions that are needed in our solutions, and look at the properties and different relations to other special functions. It is essential to notice that it is possible to use different mathematical formalisms to get the desired result. The quantum theory has been built for over one hundred years and it has different approaches. Different aspects make it possible to look at different things.
Resumo:
In this work we look at two different 1-dimensional quantum systems. The potentials for these systems are a linear potential in an infinite well and an inverted harmonic oscillator in an infinite well. We will solve the Schrödinger equation for both of these systems and get the energy eigenvalues and eigenfunctions. The solutions are obtained by using the boundary conditions and numerical methods. The motivation for our study comes from experimental background. For the linear potential we have two different boundary conditions. The first one is the so called normal boundary condition in which the wave function goes to zero on the edge of the well. The second condition is called derivative boundary condition in which the derivative of the wave function goes to zero on the edge of the well. The actual solutions are Airy functions. In the case of the inverted oscillator the solutions are parabolic cylinder functions and they are solved only using the normal boundary condition. Both of the potentials are compared with the particle in a box solutions. We will also present figures and tables from which we can see how the solutions look like. The similarities and differences with the particle in a box solution are also shown visually. The figures and calculations are done using mathematical software. We will also compare the linear potential to a case where the infinite wall is only on the left side. For this case we will also show graphical information of the different properties. With the inverted harmonic oscillator we will take a closer look at the quantum mechanical tunneling. We present some of the history of the quantum tunneling theory, its developers and finally we show the Feynman path integral theory. This theory enables us to get the instanton solutions. The instanton solutions are a way to look at the tunneling properties of the quantum system. The results are compared with the solutions of the double-well potential which is very similar to our case as a quantum system. The solutions are obtained using the same methods which makes the comparison relatively easy. All in all we consider and go through some of the stages of the quantum theory. We also look at the different ways to interpret the theory. We also present the special functions that are needed in our solutions, and look at the properties and different relations to other special functions. It is essential to notice that it is possible to use different mathematical formalisms to get the desired result. The quantum theory has been built for over one hundred years and it has different approaches. Different aspects make it possible to look at different things.
Resumo:
Nowadays problem of solving sparse linear systems over the field GF(2) remain as a challenge. The popular approach is to improve existing methods such as the block Lanczos method (the Montgomery method) and the Wiedemann-Coppersmith method. Both these methods are considered in the thesis in details: there are their modifications and computational estimation for each process. It demonstrates the most complicated parts of these methods and gives the idea how to improve computations in software point of view. The research provides the implementation of accelerated binary matrix operations computer library which helps to make the progress steps in the Montgomery and in the Wiedemann-Coppersmith methods faster.