13 resultados para Visible light communication

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this thesis was to study the effect of pulsed electric field on the preparation of TiO2 nanoparticles via sol-gel method under the visible light irradiation. The literature part introduces properties of different TiO2 crystal forms and principle of photocatalysis. It was expected that pulsed electric field would have an influence on degradation for oxalic acid and formic acid. TiO2 samples were prepared by using three frequencies (50Hz, 294Hz, and 963Hz) and two treatment times (12 minutes and 24 minutes) of pulsed electric field. The photocatalytic activities of TiO2 samples produced with sol-gel method were also compared with the TiO2 particles made by previous study and with the commercial TiO2 powder Aeroxide® (Evonic Degussa GmbH) at the same condition. Results show that pulsed electric field does have an effect on degradation for oxalic acid and formic acid. Generally, higher photocatalytic activities for oxalic acid and formic acid were obtained with lower frequency and longer treatment time of pulsed electric field.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The underwater light field is an important environmental variable as it, among other things, enables aquatic primary production. Although the portion of solar radiation that is referred to as visible light penetrates water, it is restricted to a limited surface water layer because of efficient absorption and scattering processes. Based on the varying content of optical constituents in the water, the efficiency of light attenuation changes in many dimensions and over various spatial and temporal scales. This thesis discusses the underwater light dynamics of a transitional coastal archipelago in south-western Finland, in the Baltic Sea. While the area has long been known to have a highly variable underwater light field, quantified knowledge on the phenomenon has been scarce, patchy, or non-existent. This thesis focuses on the variability in the underwater light field through euphotic depths (1% irradiance remaining), which were derived from in situ measurements of vertical profiles of photosynthetically active radiation (PAR). Spot samples were conducted in the archipelago of south-western Finland, mainly during the ice-free growing seasons of 2010 and 2011. In addition to quantifying both the seasonal and geographical patterns of euphotic depth development, the need and usability of underwater light information are also discussed. Light availability was found to fluctuate in multiple dimensions and scales. The euphotic depth was shown to have combined spatio-temporal dynamics rather than separate changes in spatial and temporal dimensions. Such complexity in the underwater light field creates challenges in data collection, as well as in its utilisation. Although local information is needed, in highly variable conditions spot sampled information may only poorly represent its surroundings. Moreover, either temporally or spatially limited sampling may cause biases in understanding underwater light dynamics. Consequently, the application of light availability data, for example in ecological modelling, should be made with great caution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Photosystem II (PSII) of oxygenic photosynthesis is susceptible to photoinhibition. Photoinhibition is defined as light induced damage resulting in turnover of the D1 protein subunit of the reaction center of PSII. Both visible and ultraviolet (UV) light cause photoinhibition. Photoinhibition induced by UV light damages the oxygen evolving complex (OEC) via absorption of UV photons by the Mn ion(s) of OEC. Under visible light, most of the earlier hypotheses assume that photoinhibition occurs when the rate of photon absorption by PSII antenna exceeds the use of the absorbed energy in photosynthesis. However, photoinhibition occurs at all light intensities with the same efficiency per photon. The aim of my thesis work was to build a model of photoinhibition that fits the experimental features of photoinhibition. I studied the role of electron transfer reactions of PSII in photoinhibition and found that changing the electron transfer rate had only minor influence on photoinhibition if light intensity was kept constant. Furthermore, quenching of antenna excitations protected less efficiently than it would protect if antenna chlorophylls were the only photoreceptors of photoinhibition. To identify photoreceptors of photoinhibition, I measured the action spectrum of photoinhibition. The action spectrum showed resemblance to the absorption spectra of Mn model compounds suggesting that the Mn cluster of OEC acts as a photoreceptor of photoinhibition under visible light, too. The role of Mn in photoinhibition was further supported by experiments showing that during photoinhibition OEC is damaged before electron transfer activity at the acceptor side of PSII is lost. Mn enzymes were found to be photosensitive under visible and UV light indicating that Mn-containing compounds, including OEC, are capable of functioning as photosensitizers both in visible and UV light. The experimental results above led to the Mn hypothesis of the mechanism of continuous-light-induced photoinhibition. According to the Mn hypothesis, excitation of Mn of OEC results in inhibition of electron donation from OEC to the oxidized primary donor P680+ both under UV and visible light. P680 is oxidized by photons absorbed by chlorophyll, and if not reduced by OEC, P680+ may cause harmful oxidation of other PSII components. Photoinhibition was also induced with intense laser pulses and it was found that the photoinhibitory efficiency increased in proportion to the square of pulse intensity suggesting that laser-pulse-induced photoinhibition is a two-photon reaction. I further developed the Mn hypothesis suggesting that the initial event in photoinhibition under both continuous and pulsed light is the same: Mn excitation that leads to the inhibition of electron donation from OEC to P680+. Under laser-pulse-illumination, another Mn-mediated inhibitory photoreaction occurs within the duration of the same pulse, whereas under continuous light, secondary damage is chlorophyll mediated. A mathematical model based on the Mn hypothesis was found to explain photoinhibition under continuous light, under flash illumination and under the combination of these two.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Painelajittelussa sellusta poistetaan epäpuhtauksia. Painelajittimien suunnittelussa on tärkeää ymmärtää lajittimessa tapahtuvia ilmiöitä. Työn tavoitteena oli kehittää kuvaamiseen perustuva mittausjärjestelmä kuitujen liikkeiden mittaamista varten. Mittauksen kohteena ovat sellusulpun kuitujen ja epäpuhtauksien nopeudet. Kuvaamisessa käytetyllä kaksoisvalotuksella pystytään mittaamaan kuitujen ja roskien nopeuksia. Nopeuksien mittaamiseen kuvista kehitettiin järjestelmä ja tutkittiin mahdollisuutta automatisoida mittaaminen. Yksittäisten kuitujen havaitsemiseen sellumassasta käytettiin optisella kirkasteella kirkastettuja kuituja ja UV-valoa. Kuituja värjättiin myös mustiksi ja kuvattiin näkyvällä valolla. Kaksoisvalotukseen käytettiin kahta stroboskooppia. Prosessin kuvaamisessa käytettiin ulkoisella herätteellä ohjattavaa kameraa. Kuvan tuomiseen kameralle ja kohteen valaistukseen käytettiin boroskooppia. Saatujen kuvien käsittelyä ja nopeuksien mittausta varten tehtiin tietokoneohjelma. Käytetyn boroskoopin valovoima ei ollut riittävä kuvausten suorittamiseen, mutta muilta osin laitteisto havaittiin toimivaksi. Kuitujen ja roskien nopeuksia pystyttiin laskemaan ohjelmalla kuvista, joita otettiin ilman boroskooppia. Mittaustiedon hankinnan automatisointi näyttää mahdolliselta tekemällä muutoksia kuvauslaitteistoon.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Photosystem II (PSII) is susceptible to light-induced damage defined as photoinhibition. In natural conditions, plants are capable of repairing the photoinhibited PSII by on-going degradation and re-synthesis of the D1 reaction centre protein of PSII. Photoinhibition is induced by both visible and ultraviolet light and photoinhibition occurs under all light intensities with the same efficiency per photon. In my thesis work, I studied the reaction kinetics and mechanism of photoinhibition of PSII, as well as photoprotection in leaves of higher plants. Action spectroscopy was used to identify photoreceptors of photoinhibition. I found that the action spectrum of photoinhibition in vivo shows resemblance to the absorption spectra of manganese model compounds of the oxygen evolving complex (OEC) suggesting a role for manganese as a photoreceptor of photoinhibition under UV and visible light. In order to study the protective effect of non-photochemical quenching, the action spectrum was measured from leaves of wild type Arabidopsis thaliana and two mutants impaired in nonphotochemical quenching of chlorophyll a excitations. The findings of action spectroscopy and simulations of chlorophyll-based photoinhibition mechanisms suggested that quenching of antenna excitations protects less efficiently than would be expected if antenna chlorophylls were the only photoreceptors of photoinhibition. The reaction kinetics of prolonged photoinhibition was studied in leaves of Cucurbita maxima and Capsicum annuum. The results indicated that photoinhibitory decrease in both the oxygen evolution activity and ratio of variable to maximum fluorescence follows firstorder kinetics in vivo. The persistence of first-order kinetics suggests that already photoinhibited reaction centres do not protect against photoinhibition and that the mechanism of photoinhibition does not have a reversible intermediate. When Cucurbita maxima leaves were photoinhibited with saturating single-turnover flashes and continuous light, the light response curve of photoinhibition was found to be essentially a straight line with both types of illumination, suggesting that similar photoinhibition mechanisms might function during illumination with continuous light and during illumination with short flashes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is known already from 1970´s that laser beam is suitable for processing paper materials. In this thesis, term paper materials mean all wood-fibre based materials, like dried pulp, copy paper, newspaper, cardboard, corrugated board, tissue paper etc. Accordingly, laser processing in this thesis means all laser treatments resulting material removal, like cutting, partial cutting, marking, creasing, perforation etc. that can be used to process paper materials. Laser technology provides many advantages for processing of paper materials: non-contact method, freedom of processing geometry, reliable technology for non-stop production etc. Especially packaging industry is very promising area for laser processing applications. However, there are only few industrial laser processing applications worldwide even in beginning of 2010´s. One reason for small-scale use of lasers in paper material manufacturing is that there is a shortage of published research and scientific articles. Another problem, restraining the use of laser for processing of paper materials, is colouration of paper material i.e. the yellowish and/or greyish colour of cut edge appearing during cutting or after cutting. These are the main reasons for selecting the topic of this thesis to concern characterization of interaction of laser beam and paper materials. This study was carried out in Laboratory of Laser Processing at Lappeenranta University of Technology (Finland). Laser equipment used in this study was TRUMPF TLF 2700 carbon dioxide laser that produces a beam with wavelength of 10.6 μm with power range of 190-2500 W (laser power on work piece). Study of laser beam and paper material interaction was carried out by treating dried kraft pulp (grammage of 67 g m-2) with different laser power levels, focal plane postion settings and interaction times. Interaction between laser beam and dried kraft pulp was detected with different monitoring devices, i.e. spectrometer, pyrometer and active illumination imaging system. This way it was possible to create an input and output parameter diagram and to study the effects of input and output parameters in this thesis. When interaction phenomena are understood also process development can be carried out and even new innovations developed. Fulfilling the lack of information on interaction phenomena can assist in the way of lasers for wider use of technology in paper making and converting industry. It was concluded in this thesis that interaction of laser beam and paper material has two mechanisms that are dependent on focal plane position range. Assumed interaction mechanism B appears in range of average focal plane position of 3.4 mm and 2.4 mm and assumed interaction mechanism A in range of average focal plane position of 0.4 mm and -0.6 mm both in used experimental set up. Focal plane position 1.4 mm represents midzone of these two mechanisms. Holes during laser beam and paper material interaction are formed gradually: first small hole is formed to interaction area in the centre of laser beam cross-section and after that, as function of interaction time, hole expands, until interaction between laser beam and dried kraft pulp is ended. By the image analysis it can be seen that in beginning of laser beam and dried kraft pulp material interaction small holes off very good quality are formed. It is obvious that black colour and heat affected zone appear as function of interaction time. This reveals that there still are different interaction phases within interaction mechanisms A and B. These interaction phases appear as function of time and also as function of peak intensity of laser beam. Limit peak intensity is the value that divides interaction mechanism A and B from one-phase interaction into dual-phase interaction. So all peak intensity values under limit peak intensity belong to MAOM (interaction mechanism A one-phase mode) or to MBOM (interaction mechanism B onephase mode) and values over that belong to MADM (interaction mechanism A dual-phase mode) or to MBDM (interaction mechanism B dual-phase mode). Decomposition process of cellulose is evolution of hydrocarbons when temperature is between 380- 500°C. This means that long cellulose molecule is split into smaller volatile hydrocarbons in this temperature range. As temperature increases, decomposition process of cellulose molecule changes. In range of 700-900°C, cellulose molecule is mainly decomposed into H2 gas; this is why this range is called evolution of hydrogen. Interaction in this range starts (as in range of MAOM and MBOM), when a small good quality hole is formed. This is due to “direct evaporation” of pulp via decomposition process of evolution of hydrogen. And this can be seen can be seen in spectrometer as high intensity peak of yellow light (in range of 588-589 nm) which refers to temperature of ~1750ºC. Pyrometer does not detect this high intensity peak since it is not able to detect physical phase change from solid kraft pulp to gaseous compounds. As interaction time between laser beam and dried kraft pulp continues, hypothesis is that three auto ignition processes occurs. Auto ignition of substance is the lowest temperature in which it will spontaneously ignite in a normal atmosphere without an external source of ignition, such as a flame or spark. Three auto ignition processes appears in range of MADM and MBDM, namely: 1. temperature of auto ignition of hydrogen atom (H2) is 500ºC, 2. temperature of auto ignition of carbon monoxide molecule (CO) is 609ºC and 3. temperature of auto ignition of carbon atom (C) is 700ºC. These three auto ignition processes leads to formation of plasma plume which has strong emission of radiation in range of visible light. Formation of this plasma plume can be seen as increase of intensity in wavelength range of ~475-652 nm. Pyrometer shows maximum temperature just after this ignition. This plasma plume is assumed to scatter laser beam so that it interacts with larger area of dried kraft pulp than what is actual area of beam cross-section. This assumed scattering reduces also peak intensity. So result shows that assumably scattered light with low peak intensity is interacting with large area of hole edges and due to low peak intensity this interaction happens in low temperature. So interaction between laser beam and dried kraft pulp turns from evolution of hydrogen to evolution of hydrocarbons. This leads to black colour of hole edges.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conventional diagnostics tests and technologies typically allow only a single analysis and result per test. The aim of this study was to propose robust and multiplex array-inwell test platforms based on oligonucleotide and protein arrays combining the advantages of simple instrumentation and upconverting phosphor (UCP) reporter technology. The UCPs are luminescent lanthanide-doped crystals that have a unique capability to convert infrared radiation into visible light. No autofluorescence is produced from the sample under infrared excitation enabling the development of highly sensitive assays. In this study, an oligonucleotide array-in-well hybridization assay was developed for the detection and genotyping of human adenoviruses. The study provided a verification of the advantages and potential of the UCP-based reporter technology in multiplex assays as well as anti-Stokes photoluminescence detection with a new anti- Stokes photoluminescence imager. The developed assay was technically improved and used to detect and genotype adenovirus types from clinical specimens. Based on the results of the epidemiological study, an outbreak of adenovirus type B03 was observed in the autumn of 2010. A quantitative array-in-well immunoassay was developed for three target analytes (prostate specific antigen, thyroid stimulating hormone, and luteinizing hormone). In this study, quantitative results were obtained for each analyte and the analytical sensitivities in buffer were in clinically relevant range. Another protein-based array-inwell assay was developed for multiplex serodiagnostics. The developed assay was able to detect parvovirus B19 IgG and adenovirus IgG antibodies simultaneously from serum samples according to reference assays. The study demonstrated that the UCPtechnology is a robust detection method for diverse multiplex imaging-based array-inwell assays.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Scanning optics create different types of phenomena and limitation to cladding process compared to cladding with static optics. This work concentrates on identifying and explaining the special features of laser cladding with scanning optics. Scanner optics changes cladding process energy input mechanics. Laser energy is introduced into the process through a relatively small laser spot which moves rapidly back and forth, distributing the energy to a relatively large area. The moving laser spot was noticed to cause dynamic movement in the melt pool. Due to different energy input mechanism scanner optic can make cladding process unstable if parameter selection is not done carefully. Especially laser beam intensity and scanning frequency have significant role in the process stability. The laser beam scanning frequency determines how long the laser beam affects with specific place local specific energy input. It was determined that if the scanning frequency in too low, under 40 Hz, scanned beam can start to vaporize material. The intensity in turn determines on how large package this energy is brought and if the intensity of the laser beam was too high, over 191 kW/cm2, laser beam started to vaporize material. If there was vapor formation noticed in the melt pool, the process starts to resample more laser alloying due to deep penetration of laser beam in to the substrate. Scanner optics enables more flexibility to the process than static optics. The numerical adjustment of scanning amplitude enables clad bead width adjustment. In turn scanner power modulation (where laser power is adjusted according to where the scanner is pointing) enables modification of clad bead cross-section geometry when laser power can be adjusted locally and thus affect how much laser beam melts material in each sector. Power modulation is also an important factor in terms of process stability. When a linear scanner is used, oscillating the scanning mirror causes a dwell time in scanning amplitude border area, where the scanning mirror changes the direction of movement. This can cause excessive energy input to this area which in turn can cause vaporization and process instability. This process instability can be avoided by decreasing energy in this region by power modulation. Powder feeding parameters have a significant role in terms of process stability. It was determined that with certain powder feeding parameter combinations powder cloud behavior became unstable, due to the vaporizing powder material in powder cloud. Mainly this was noticed, when either or both the scanning frequency or powder feeding gas flow was low or steep powder feeding angle was used. When powder material vaporization occurred, it created vapor flow, which prevented powder material to reach the melt pool and thus dilution increased. Also powder material vaporization was noticed to produce emission of light at wavelength range of visible light. This emission intensity was noticed to be correlated with the amount of vaporization in the powder cloud.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Titanium dioxide (TiO2) nanoparticles with different sizes and crystalloid structures produced by the thermal method and doped with silver iodide (AgI), nitrogen (N), sulphur (S) and carbon (C) were applied as adsorbents. The adsorption of Methyl Violet (MV), Methylene Blue (MB), Methyl Orange (MO) and Orange II on the surface of these particles was studied. The photocatalytic activity of some particles for the destruction of MV and Orange II was evaluated under sunlight and visible light. The equilibrium adsorption data were fitted to the Langmuir, Freundlich, Langmuir-Freundlich and Temkin isotherms. The equilibrium data show that TiO2 particles with larger sizes and doped with AgI, N, S and C have the highest adsorption capacity for the dyes. The kinetic data followed the pseudo-first order and pseudo-second order models, while desorption data fitted the zero order, first order and second order models. The highest adsorption rate constant was observed for the TiO2 with the highest anatase phase percentage. Factors such as anatase crystalloid structure, particle size and doping with AgI affect the photocatalytic activity significantly. Increasing the rutile phase percentage also decreases the tendency to desorption for N-TiO2 and S-TiO2. Adsorption was not found to be important in the photocatalytic decomposition of MV in an investigation with differently sized AgI-TiO2 nanoparticles. Nevertheless C-TiO2 was found to have higher adsorption activity onto Orange II, as the adsorption role of carbon approached synchronicity with the oxidation role.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to demonstrate the wide applicability of the novel photoluminescent labels called upconverting phosphors (UCPs) in proximity-based bioanalytical assays. The exceptional features of the lanthanide-doped inorganic UCP compounds stem from their capability for photon upconversion resulting in anti-Stokes photoluminescence at visible wavelengths under near-infrared (NIR) excitation. Major limitations related to conventional photoluminescent labels are avoided, rendering the UCPs a competitive next-generation label technology. First, the background luminescence is minimized due to total elimination of autofluorescence. Consequently, improvements in detectability are expected. Second, at the long wavelengths (>600 nm) used for exciting and detecting the UCPs, the transmittance of sample matrixes is significantly greater in comparison with shorter wavelengths. Colored samples are no longer an obstacle to the luminescence measurement, and more flexibility is allowed even in homogeneous assay concepts, where the sample matrix remains present during the entire analysis procedure, including label detection. To transform a UCP particle into a biocompatible label suitable for bioanalytical assays, it must be colloidal in an aqueous environment and covered with biomolecules capable of recognizing the analyte molecule. At the beginning of this study, only UCP bulk material was available, and it was necessary to process the material to submicrometer-sized particles prior to use. Later, the ground UCPs, with irregular shape, wide size-distribution and heterogeneous luminescence properties, were substituted by a smaller-sized spherical UCP material. The surface functionalization of the UCPs was realized by producing a thin hydrophilic coating. Polymer adsorption on the UCP surface is a simple way to introduce functional groups for bioconjugation purposes, but possible stability issues encouraged us to optimize an optional silica-encapsulation method which produces a coating that is not detached in storage or assay conditions. An extremely thin monolayer around the UCPs was pursued due to their intended use as short-distance energy donors, and much attention was paid to controlling the thickness of the coating. The performance of the UCP technology was evaluated in three different homogeneous resonance energy transfer-based bioanalytical assays: a competitive ligand binding assay, a hybridization assay for nucleic acid detection and an enzyme activity assay. To complete the list, a competitive immunoassay has been published previously. Our systematic investigation showed that a nonradiative energy transfer mechanism is indeed involved, when a UCP and an acceptor fluorophore are brought into close proximity in aqueous suspension. This process is the basis for the above-mentioned homogeneous assays, in which the distance between the fluorescent species depends on a specific biomolecular binding event. According to the studies, the submicrometer-sized UCP labels allow versatile proximity-based bioanalysis with low detection limits (a low-nanomolar concentration for biotin, 0.01 U for benzonase enzyme, 0.35 nM for target DNA sequence).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Social media is a rather new phenomenon which has revolutionised the world of online communication. However, academic research on how companies can benefit from social media is lacking. The research objective of this thesis was to examine the use of social media in international brand communication of small Finnish design-intensive companies. Therefore, this research contributes also to the research gap in SME branding. The focus was on communication targeted at consumers. The research was carried out as a mixed methods research employing the questionnaire and multiple case study methods. The questionnaire was used to gather preliminary information on Finnish design-intensive companies and to provide an eligible list of companies for deeper examination. Then, four case companies were studied in more depth. The empirical evidence of the case companies was mainly gathered through theme interviews. The results of the questionnaire shed light on the internationalisation of small Finnish designintensive companies. On average, the companies had internationalised rather quickly after they had been founded. However, the share of exports was rather low in most of the companies. The results revealed also that social media was already used widely in the exporting companies and the use can be expected to grow in future. The findings of the multiple case study suggest that branding activities in small Finnish designintensive companies are constrained by limited resources and skills. In addition, the branding activities are strongly guided by the vision and values of the entrepreneur(s) rather than extensive marketing research. The brand structure was simple in all case companies and they aimed at having a standardised brand image across markets. However, all case companies had faced a need for some adaptation of their international brand communication. Internationally important brand communication channels were international fairs, the internet, word-of-mouth and social media. Social media offered a cost-effective brand communication channel for the case companies. It was used for various purposes, such as creating brand awareness and affecting how the brand is perceived. The entrepreneurs found the use of social media to be rather easy and the case companies had not faced any major challenges. However, the companies had recognised that communication in social media requires consistency and planning. The planning was rather informal and stayed on a general level. Overall, the utilisation of social media in the case companies was limited by a lack of resources. It seemed to affect especially the follow-up of brand communication in social media which stayed rather superficial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Operating in business-to-business markets requires an in-depth understanding on business networks. Actions and reactions made to compete in markets are fundamentally based on managers‘ subjective perceptions of the network. However, an amalgamation of these individual perceptions, termed a network picture, to a common company level shared understanding on that network, known as network insight, is found to be a substantial challenge for companies. A company‘s capability to enhance common network insight is even argued to lead competitive advantage. Especially companies with value creating logics that require wide comprehension of and collaborating in networks, such as solution business, are necessitated to develop advanced network insight. According to the extant literature, dispersed pieces of atomized network pictures can be unified to a common network insight through a process of amalgamation that comprises barriers/drivers of multilateral exchange, manifold rationality, and recursive time. However, the extant body of literature appears to lack an understanding on the role of internal communication in the development of network insight. Nonetheless, the extant understanding on the amalgamation process indicates that internal communication plays a substantial role in the development of company level network insight. The purpose of the present thesis is to enhance understanding on internal communication in the amalgamation of network pictures to develop network insight in the solution business setting, which was chosen to represent business-to-business value creating logic that emphasizes the capability to understand and utilize networks. Thus, in solution business the role of succeeding in the amalgamation process is expected to emphasize. The study combines qualitative and quantitative research by means of various analytical methods including multiple case analysis, simulation, and social network analysis. Approaching the nascent research topic with differing perspectives and means provides a broader insight on the phenomenon. The study provides empirical evidence from Finnish business-to-business companies which operate globally. The empirical data comprise interviews (n=28) with managers of three case companies. In addition the data includes a questionnaire (n=23) collected mainly for the purpose of social network analysis. In addition, the thesis includes a simulation study more specifically achieved by means of agent based modeling. The findings of the thesis shed light on the role of internal communication in the amalgamation process, contributing to the emergent discussion of network insights and thus to the industrial marketing research. In addition, the thesis increases understanding on internal communication in the change process to solution business, a supplier‘s internal communication in its matrix organization structure during a project sales process, key barriers and drivers that influence internal communication in project sales networks, perceived power within industrial project sales, and the revisioning of network pictures. According to the findings, internal communication is found to play a substantial role in the amalgamation process. First, it is suggested that internal communication is a base of multilateral exchange. Second, it is suggested that internal communication intensifies and maintains manifold rationality. Third, internal communication is needed to explicate the usually differing time perspectives of others and thus it is suggested that internal communication has role as the explicator of recursive time. Furthermore, the role of an efficient amalgamation process is found to be emphasized in solutions business as it requires a more advanced network insight for cross-functional collaboration. Finally, the thesis offers several managerial implications for industrial suppliers to enhance the amalgamation process when operating in solution business.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’objectif de cette étude est d’examiner le discours des deux commissaires européens sur Twitter. L’étude se concentre à déterminer les langues principales du discours, la présence du dialogue multilingue et quelques caractéristiques des ressources utilisées par les participants. La recherche examine également les sujets du discours et le rôle des hashtags. Le corpus de l’étude consiste en 20 tweets par commissaire et ses réactions. La méthode de recherche est ethnographique. Le cadre théorique de l’étude se base sur la sociolinguistique de la globalisation (Blommaert, Heller) et les théories sur la communication médiée par l’ordinateur (Androutsopoulos). Les résultats de l’analyse montrent que les deux commissaires communiquent en plusieurs langues et les participants en introduisent encore plus dans leurs réactions. Il n’y a pas d’interaction entre les politiciens et les participants. La réflexivité métalinguistique est présente dans les réactions – les participants critiquent le choix de langue des commissaires. Ainsi, le choix de la langue des politiciens devient le sujet de la discussion. L’utilisation des pronoms je et nous dans le discours des politiciens fait également l’objet de la recherche. Les nous collectifs du corpus expriment surtout une collectivité professionnelle mais également une collectivité idéologique. Les sujets du discours des politiciens sont principalement liés à l’actualité de l’UE tandis que les participants introduisent surtout des sujets où les politiciens sont critiqués. En ce qui concerne les hashtags, deux catégories ont été identifiées : les hashtags qui ont comme objectif de faire le concept visible ou bien les hashtags qui ont comme but de guider les participants à interpréter le message d’une façon spécifique. L’étude montre également que le principe du multilinguisme n’est pas respecté par les politiciens sur Twitter. Pourtant, Twitter peut fournir une plate-forme égalitaire pour la discussion. Ainsi, il serait intéressant d’étudier Twitter du point de vue de l’égalité linguistique.