26 resultados para Verbal memory
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Positron emission tomography (PET) studies on healthy individuals have revealed a marked interindividual variability in striatal dopamine D2 receptor density that can be partly accounted for by genetic factors. The examination of the extrastriatal lowdensity D2 receptor populations has been impeded by the lack of suitable tracers. However, the quantification of these D2 receptor populations is now feasible with recently developed PET radioligands. The objective of this thesis was to study brain neurobiological correlates of common functional genetic variants residing in candidate genes relevant for D2 receptor functioning. For this purpose, healthy subjects were studied with PET imaging using [11C]raclopride and [11C]FLB457 as radioligands. The candidate genes examined in this work were the human D2 receptor gene (DRD2) and the catechol-Omethyltransferase gene (COMT). The region-specific genotypic influences were explored by comparing D2 receptor binding properties in the striatum, the cortex and the thalamus. As an additional study objective, the relationship between cortical D2 receptor density and a cognitive phenotype i.e. verbal memory and learning was assessed. The main finding of this study was that DRD2 C957T genotype altered markedly D2 receptor density in the cortex and the thalamus whereas in the striatum the C957T genotype affected D2 receptor affinity, but not density. Furthermore, the A1 allele of the DRD2-related TaqIA polymorphism showed increased cortical and thalamic D2 receptor density, but had the opposite effect on striatal D2 receptor density. The DRD2 –141C Ins/Del or the COMT Val158Met genotypes did not change D2 receptor binding properties. Finally, unlike previously reported, cortical D2 receptor density did not show any significant correlation with verbal memory function. The results of this study suggest that the C957T and the TaqIA genotypes have region-specific neurobiological correlates in brain dopamine D2 receptor availability in vivo. The biological mechanisms underlying these findings are unclear, but they may be related to the region-specific regulation of dopamine neurotranssion, gene/receptor expression and epigenesis. These findings contribute to the understanding of the genetic regulation of dopamine and D2 receptor-related brain functions in vivo in man. In addition, the results provide potentially useful endophenotypes for genetic research on psychiatric and neurological disorders.
Resumo:
Resultaten påvisade små, men mätbara försämringar i minnes- och verbal förmåga hos personer som haft Parkinsons sjukdom under tre år. Jämfört med en kontrollgrupp uppvisade Parkinsonpatienter avvikande responser i hjärnans elektriska aktivitet under en korttidsminnesuppgift, och de presterade även sämre i olika typer av andra minnesuppgifter. Försämring i en specifik typ av minnesuppgift korrelerade med förminskad volym i höger hjärnhalva. Samband hittades också mellan sämre verbal förmåga och förminskad volym i djupa hjärnstrukturer. Förminskad hjärnvolym har tidigare påvisats hos dementa patienter i senare sjukdomsstadier. Forskningsresultaten bidrar med ny kunskap om kognitiva symptom och deras neurala bakgrund vid Parkinsons sjukdom. De tyder också på att tidig kognitiv funktionsnedsättning kan identifieras, vilket kan bidra till utvecklingen av sjukdomens behandling. Parkinsons sjukdom är den näst vanligaste neurogeriatriska sjukdomen efter Alzheimers sjukdom. Symptomen uppstår som följd av förminskad produktion av hjärnans transmittorämne dopamin. Parkinsons sjukdom har traditionellt betraktats som en progressiv motorisk sjukdom. Ny forskning tyder på att multipla hjärnsystem skadas, vilket resulterar i att även tankeprocesser påverkas. 75-80% uppskattas insjukna i demens 10-15 år efter diagnos, men det kognitiva sjukdomsförloppet och orsaken till demenssymptomen är tillsvidare okänd. I Finland uppskattas ca 10-12 000 personer ha Parkinsons sjukdom, varav ca 3 000 uppskattas ha demens. ----------------------------------------------------------------------------------------------------------------------------------------------------- Tutkimuksessa todettiin lieviä muutoksia muisti- ja kielellisissä toiminnoissa alle kolme vuotta sairastaneilla Parkinson-potilailla. Potilailla havaittiin poikkeavia aivosähkötoiminnan vasteita lyhytkestoista muistia mittaavan tehtävän aikana. Potilaat suoriutuivat myös verrokkiryhmää heikommin useissa muistitehtävissä. Heikentynyt tahaton muisti liittyi pienempään aivokuoren harmaan aineen paikalliseen tilavuuteen. Heikompi kielellinen suoriutuminen liittyi pienempään harmaan aineen tilavuuteen aivojen syvissä rakenteissa. Pienentyneitä aivorakenteiden tilavuuksia on aiemmin todettu dementoituneilla Parkinson-potilailla sairauden myöhemmissä vaiheissa. Tutkimustulokset tuovat uutta tietoa Parkinsonin taudin kognitiivisista oireista ja niiden aivoperäisestä taustasta. Tulosten perusteella on mahdollista tunnistaa jo varhaisia kognitiivisia muutoksia, mikä voi mahdollistaa tehokkaamman hoidon kohdentamisen. Parkinsonin tauti on Alzheimerin taudin jälkeen toiseksi yleisin neurogeriatrinen sairaus. Oirekuva liittyy aivojen dopaminergisen järjestelmän rappeutumiseen. Perinteisesti liikehäiriösairaudeksi luokiteltu sairaus vaurioittaa lukuisia muita aivojärjestelmiä aiheuttaen muutoksia myös mm. ajattelutoiminnoissa. Pitkään sairastaneista 75–80 prosentilla esiintyy dementiaoireita, mutta oireiden syy ja kehityskaari tunnetaan toistaiseksi huonosti. Suomessa on arviolta 10–12 000 Parkinson-potilasta, joista noin 3 000 arvioidaan kärsivän dementiaoireista.
Resumo:
The main focus of the present thesis was at verbal episodic memory processes that are particularly vulnerable to preclinical and clinical Alzheimer’s disease (AD). Here these processes were studied by a word learning paradigm, cutting across the domains of memory and language learning studies. Moreover, the differentiation between normal aging, mild cognitive impairment (MCI) and AD was studied by the cognitive screening test CERAD. In study I, the aim was to examine how patients with amnestic MCI differ from healthy controls in the different CERAD subtests. Also, the sensitivity and specificity of the CERAD screening test to MCI and AD was examined, as previous studies on the sensitivity and specificity of the CERAD have not included MCI patients. The results indicated that MCI is characterized by an encoding deficit, as shown by the overall worse performance on the CERAD Wordlist learning test compared with controls. As a screening test, CERAD was not very sensitive to MCI. In study II, verbal learning and forgetting in amnestic MCI, AD and healthy elderly controls was investigated with an experimental word learning paradigm, where names of 40 unfamiliar objects (mainly archaic tools) were trained with or without semantic support. The object names were trained during a 4-day long period and a follow-up was conducted one week, 4 weeks and 8 weeks after the training period. Manipulation of semantic support was included in the paradigm because it was hypothesized that semantic support might have some beneficial effects in the present learning task especially for the MCI group, as semantic memory is quite well preserved in MCI in contrast to episodic memory. We found that word learning was significantly impaired in MCI and AD patients, whereas forgetting patterns were similar across groups. Semantic support showed a beneficial effect on object name retrieval in the MCI group 8 weeks after training, indicating that the MCI patients’ preserved semantic memory abilities compensated for their impaired episodic memory. The MCI group performed equally well as the controls in the tasks tapping incidental learning and recognition memory, whereas the AD group showed impairment. Both the MCI and the AD group benefited less from phonological cueing than the controls. Our findings indicate that acquisition is compromised in both MCI and AD, whereas long13 term retention is not affected to the same extent. Incidental learning and recognition memory seem to be well preserved in MCI. In studies III and IV, the neural correlates of naming newly learned objects were examined in healthy elderly subjects and in amnestic MCI patients by means of positron emission tomography (PET) right after the training period. The naming of newly learned objects by healthy elderly subjects recruited a left-lateralized network, including frontotemporal regions and the cerebellum, which was more extensive than the one related to the naming of familiar objects (study III). Semantic support showed no effects on the PET results for the healthy subjects. The observed activation increases may reflect lexicalsemantic and lexical-phonological retrieval, as well as more general associative memory mechanisms. In study IV, compared to the controls, the MCI patients showed increased anterior cingulate activation when naming newly learned objects that had been learned without semantic support. This suggests a recruitment of additional executive and attentional resources in the MCI group.
Resumo:
Ajankohtaista
Resumo:
Ajankohtaista
Resumo:
Ajankohtaista
Resumo:
Ajankohtaista
Resumo:
The present work is a part of the large project with purpose to qualify the Flash memory for automotive application using a standardized test and measurement flow. High memory reliability and data retention are the most critical parameters in this application. The current work covers the functional tests and data retention test. The purpose of the data retention test is to obtain the data retention parameters of the designed memory, i.e. the maximum time of information storage at specified conditions without critical charge leakage. For this purpose the charge leakage from the cells, which results in decrease of cells threshold voltage, was measured after a long-time hightemperature treatment at several temperatures. The amount of lost charge for each temperature was used to calculate the Arrhenius constant and activation energy for the discharge process. With this data, the discharge of the cells at different temperatures during long time can be predicted and the probability of data loss after years can be calculated. The memory chips, investigated in this work, were 0.035 μm CMOS Flash memory testchips, designed for further use in the Systems-on-Chips for automotive electronics.
Resumo:
Many cognitive deficits after TBI (traumatic brain injury) are well known, such as memory and concentration problems, as well as reduced information-processing speed. What happens to patients and cognitive functioning after immediate recovery is poorly known. Cognitive functioning is flexible and may be influenced by genetic, psychological and environmental factors decades after TBI. The general aim of this thesis was to describe the long-term cognitive course after TBI, to find variables that may contribute to it, and how the cognitive functions after TBI are associated with specific medical factors and reduced survival. The original study group consisted of 192 patients with TBI who were originally assessed with the Mild Deterioration Battery (MDB) on average two years after the injury, during the years 1966 – 1972. During a 30-year follow-up, we studied the risks for reduced survival, and the mortality of the patients was compared with the general population using the Standardized Mortality Ratio (SMR). Sixty-one patients were re-assessed during 1998-2000. These patients were evaluated with the MDB, computerized testing, and with various other neuropsychological methods for attention and executive functions. Apolipoprotein-E (ApoE) genotyping and magnetic resonance imaging (MRI) based on volumetric analysis of the hippocampus and lateral ventricles were performed. Depressive symptoms were evaluated with the short form of the Beck depression inventory. The cognitive performance at follow-up was compared with a control group that was similar to the study group in regard to age and education. The cognitive outcome of the patients with TBI varied after three decades. The majority of the patients showed a decline in their cognitive level, the rest either improved or stayed at the same level. Male gender and higher age at injury were significant risk factors for the decline. Whereas most cognitive domains declined during the follow-up, semantic memory behaved in the opposite way, showing recovery after TBI. In the follow-up assessment, the memory decline and impairments in the set-shifting domain of executive functions were associated with MRI-volumetric measures, whereas reduction in information-processing speed was not associated with the MRI measures. The presence of local contusions was only weakly associated with cognitive functions. Only few cognitive methods for attention were capable of discriminating TBI patients with and without depressive symptoms. On the other hand, most complex attentional tests were sensitive enough to discriminate TBI patients (non-depressive) from controls. This means that complex attention functions, mediated by the frontal lobes, are relatively independent of depressive symptoms post-TBI. The presence of ApoE4 was associated with different kinds of memory processes including verbal and visual episodic memory, semantic memory and verbal working memory, depending on the length of time since TBI. Many other cognitive processes were not affected by the presence of ApoE4. Age at injury and poor vocational outcome were independent risk factors for reduced survival in the multivariate analysis. Late mortality was higher among younger subjects (age < 40 years at death) compared with the general population which should be borne in mind when assessing the need for rehabilitation services and long-term follow-up after TBI.