26 resultados para Variable Step
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, twomechanisms whichmake the systemstiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation are proposed. Generally, in hydraulic power transmission systems the orifice flow is clearly in the turbulent area. The flow becomes laminar as the pressure drop over the orifice approaches zero only in rare situations. These are e.g. when a valve is closed, or an actuator is driven against an end stopper, or external force makes actuator to switch its direction during operation. This means that in terms of accuracy, the description of laminar flow is not necessary. But, unfortunately, when a purely turbulent description of the orifice is used, numerical problems occur when the pressure drop comes close to zero since the first derivative of flow with respect to the pressure drop approaches infinity when the pressure drop approaches zero. Furthermore, the second derivative becomes discontinuous, which causes numerical noise and an infinitely small integration step when a variable step integrator is used. A numerically efficient model for the orifice flow is proposed using a cubic spline function to describe the flow in the laminar and transition areas. Parameters for the cubic spline function are selected such that its first derivative is equal to the first derivative of the pure turbulent orifice flow model in the boundary condition. In the dynamic simulation of fluid power circuits, a tradeoff exists between accuracy and calculation speed. This investigation is made for the two-regime flow orifice model. Especially inside of many types of valves, as well as between them, there exist very small volumes. The integration of pressures in small fluid volumes causes numerical problems in fluid power circuit simulation. Particularly in realtime simulation, these numerical problems are a great weakness. The system stiffness approaches infinity as the fluid volume approaches zero. If fixed step explicit algorithms for solving ordinary differential equations (ODE) are used, the system stability would easily be lost when integrating pressures in small volumes. To solve the problem caused by small fluid volumes, a pseudo-dynamic solver is proposed. Instead of integration of the pressure in a small volume, the pressure is solved as a steady-state pressure created in a separate cascade loop by numerical integration. The hydraulic capacitance V/Be of the parts of the circuit whose pressures are solved by the pseudo-dynamic method should be orders of magnitude smaller than that of those partswhose pressures are integrated. The key advantage of this novel method is that the numerical problems caused by the small volumes are completely avoided. Also, the method is freely applicable regardless of the integration routine applied. The superiority of both above-mentioned methods is that they are suited for use together with the semi-empirical modelling method which necessarily does not require any geometrical data of the valves and actuators to be modelled. In this modelling method, most of the needed component information can be taken from the manufacturer’s nominal graphs. This thesis introduces the methods and shows several numerical examples to demonstrate how the proposed methods improve the dynamic simulation of various hydraulic circuits.
Resumo:
In this master's thesis a mechanical model that is driven with variable speed synchronous machine was developed. The developed mechanical model simulates the mechanics of power transmission and its torsional vibrations. The mechanical model was developed for the need of the branched mechanics of a rolling mill and the propulsion system of a tanker. First, the scope of the thesis was to clarify the concepts connected to the mechanical model. The clarified concepts are the variable speed drive, the mechanics of power transmission and the vibrationsin the power transmission. Next, the mechanical model with straight shaft line and twelve moments of inertia that existed in the beginning was developed to be branched considering the case of parallel machines and the case of parallel rolls. Additionally, the model was expanded for the need of moreaccurate simulation to up to thirty moments of inertia. The model was also enhanced to enable three phase short circuit situation of the simulated machine. After that the mechanical model was validated by comparing the results of the developed simulation tool to results of other simulation tools. The compared results are the natural frequencies and mode shapes of torsional vibration, the response of the load torque step and the stress in the mechanical system occurred by the permutation of the magnetic field that is arisen from the three phase short circuit situation. The comparisons were accomplished well and the mechanical model was validated for the compared cases. Further development to be made is to develop the load torque to be time-dependent and to install two frequency converters and two FEM modeled machines to be simulated parallel.
Resumo:
Hitsattujen rakenteiden väsymiskestävyyttä pystytään parantamaan jälkikäsittelymenetelmillä, joistayksi, ultraäänikäsittely muokkaa hitsin geometriaa ja aiheuttaa puristusjäännösjännitystilan. Tässä tutkimuksessa verrataan kokeellisesti kuormaa kantamattoman hitsatun ja ui -käsitellyn rivan väsymislujuutta toisiinsa. Tutkimusohjelmaan kuuluu kahta teräslajia ja sekä vakio - että vaihtuva - amplitudista kuormitusta. Ultraäänikäsittelyllä saavutetaan väsymiskestoiän parantuminen vakio - ja vaihtuva - amplitudisella kuormituksella. Perusaineen lujuudella ei ole merkittää vaikutusta väsymislujuuteen kun liitos on hitsatussa tilassa. Tällöin väsymiskestävyyden määrää hitsin rajaviivan jännityskeskittymä. Ultraäänikäsitellyn hitsatunliitoksen väsymiskestävyys on suurempi korkeamman lujuuden omaavilla teräksillä. Tästä syystä korkealujuuksisten terästen käyttö ultraäänikäsiteltynä väsyttävästi kuormitetuissa kevytrakenteissa on perusteltua.
Resumo:
Design aspects of the Transversally Laminated Anisotropic (TLA) Synchronous Reluctance Motor (SynRM) are studied and the machine performance analysis compared to the Induction Motor (IM) is done. The SynRM rotor structure is designed and manufactured for a30 kW, four-pole, three-phase squirrel cage induction motor stator. Both the IMand SynRM were supplied by a sensorless Direct Torque Controlled (DTC) variablespeed drive. Attention is also paid to the estimation of the power range where the SynRM may compete successfully with a same size induction motor. A technicalloss reduction comparison between the IM and SynRM in variable speed drives is done. The Finite Element Method (FEM) is used to analyse the number, location and width of flux barriers used in a multiple segment rotor. It is sought for a high saliency ratio and a high torque of the motor. It is given a comparison between different FEM calculations to analyse SynRM performance. The possibility to take into account the effect of iron losses with FEM is studied. Comparison between the calculated and measured values shows that the design methods are reliable. A new application of the IEEE 112 measurement method is developed and used especially for determination of stray load losses in laboratory measurements. The study shows that, with some special measures, the efficiency of the TLA SynRM is equivalent to that of a high efficiency IM. The power factor of the SynRM at rated load is smaller than that of the IM. However, at lower partial load this difference decreases and this, probably, brings that the SynRM gets a better power factor in comparison with the IM. The big rotor inductance ratio of the SynRM allows a good estimating of the rotor position. This appears to be very advantageous for the designing of the rotor position sensor-less motor drive. In using the FEM designed multi-layer transversally laminated rotor with damper windings it is possible to design a directly network driven motor without degrading the motorefficiency or power factor compared to the performance of the IM.
Resumo:
Tämän diplomityön tarkoitus on selvittää pienjakelujännitteen nostosta aiheutuvia vaikutuksia sellutehtaan varavoimaverkossa. Työn alussa esitellään varavoimaverkkoon kuuluvia osia, selvitetään erilaisten kuormien vaikutusta varavoimaverkon sähkön laatuun sekä kuormien jakoa varmennettuihin verkkoihin. Seuraavaksi suunnitellaan kaksi keskitettyä varavoimaverkkomallia eri pienjakelujännitteillä. Mallien nimellisjännitteet ovat 400 V ja 690 V. Varavoimaverkkomallien kuormat ja osastojen väliset etäisyydet on otettu valmiista sellutehtaista. Tässä diplomityössä painotutaan erityisesti varavoimaverkkomallien mitoitukseen ja jakelujännitteen nostosta aiheutuvien vaikutusten teknistaloudelliseen vertailuun. Vertailu tehdään keskijännitekojeiston ja varavoimakeskusten välisellä alueella, johon kuu-luvat jakelumuuntaja, varavoimakone, varavoimapääkeskus, kiskosillat, jakelukaapelit, kytkinvaroke- ja katkaisijalähdöt sekä mahdolliset välimuuntajat. Varavoimaverkkojen välisessä kustannusvertailussa käytetään nykyarvomenetelmää.
Resumo:
As the world’s energy demand is increasing, a durable solution to control it is to improve the energy efficiency of the processes. It has been estimated that pumping applications have a significant potential for energy savings trough equipment or control system changes. For many pumping application the use of a variable speed drive as a process control element is the most energy efficient solution. The main target of this study is to examine the energy efficiency of a drive system that moves the pump. In a larger scale the purpose of this study is to examine how the different manufacturers’ variable speed drives are functioning as a control device of a pumping process. The idea is to compare the drives from a normal pump user’s point of view. The things that are mattering for the pump user are the efficiency gained in the process and the easiness of the use of the VSD. So some thought is given also on valuating the user-friendliness of the VSDs. The VSDs are compared to each other also on the basis of their life cycle energy costs in different kind of pumping cases. The comparison is made between ACS800 from ABB, VLT AQUA Drive from Danfoss, NX-drive from Vacon and Micromaster 430 from Siemens. The efficiencies are measured in power electronics laboratory in the Lappeenranta University of Technology with a system that consists of a variable speed drive, an induction motor with dc-machine, two power analyzers and a torque transducer. The efficiencies are measured as a function of a load at different frequencies. According to measurement results the differences between the measured system efficiencies on the actual working area of pumping are on average few percent units. When examining efficiencies at the whole range of different loads and frequencies, the differences get bigger. At low frequencies and loads the differences between the most efficient and the least efficient systems are at the most about ten percent units. At the most of the tested points ABB’s drive seem to have slightly better efficiencies than the other drives.
Resumo:
This thesis presents briefly the basic operation and use of centrifugal pumps and parallel pumping applications. The characteristics of parallel pumping applications are compared to circuitry, in order to search analogy between these technical fields. The purpose of studying circuitry is to find out if common software tools for solving circuit performance could be used to observe parallel pumping applications. The empirical part of the thesis introduces a simulation environment for parallel pumping systems, which is based on circuit components of Matlab Simulink —software. The created simulation environment ensures the observation of variable speed controlled parallel pumping systems in case of different controlling methods. The introduced simulation environment was evaluated by building a simulation model for actual parallel pumping system at Lappeenranta University of Technology. The simulated performance of the parallel pumps was compared to measured values of the actual system. The gathered information shows, that if the initial data of the system and pump perfonnance is adequate, the circuitry based simulation environment can be exploited to observe parallel pumping systems. The introduced simulation environment can represent the actual operation of parallel pumps in reasonably accuracy. There by the circuitry based simulation can be used as a researching tool to develop new controlling ways for parallel pumps.
Resumo:
The work aims to analyze the possibilities of utilizing old crane driving AC induction motors in modern pulse-width-modulated variable frequency drives. Bearing currents and voltage stresses are the two main problems associated with modern IGBT inverters, and they may cause premature failure of an old induction motor. The origins of these two problems are studied. An analysis of the mechanism of bearing failure is proposed. Certain types of bearing currents are considered in detail. The most effective and economical means are chosen for bearing currents mitigation. Transient phenomena of cables and mechanism of over voltages occurring at motor terminals are studied in the work. The weakest places of the stator winding insulation system are shown and recommendations are given considering the mitigation of voltage stresses. Only the most appropriate and cost effective preventative methods are chosen for old motor drives. Rewinding of old motors is also considered.
Resumo:
Data transmission between an electric motor and a frequency converter is required in variablespeed electric drives because of sensors installed at the motor. Sensor information can be used for various useful applications to improve the system reliability and its properties. Traditionally, the communication medium is implemented by an additional cabling. However, the costs of the traditional method may be an obstacle to the wider application of data transmission between a motor and a frequency converter. In any case, a power cable is always installed between a motor and a frequency converter for power supply, and hence it may be applied as a communication medium for sensor level data. This thesis considers power line communication (PLC) in inverter-fed motor power cables. The motor cable is studied as a communication channel in the frequency band of 100 kHz−30 MHz. The communication channel and noise characteristics are described. All the individual components included in a variable-speed electric drive are presented in detail. A channel model is developed, and it is verified by measurements. A theoretical channel information capacity analysis is carried out to estimate the opportunities of a communication medium. Suitable communication and forward error correction (FEC) methods are suggested. A general method to implement a broadband and Ethernet-based communication medium between a motor and a frequency converter is proposed. A coupling interface is also developed that allows to install the communication device safely to a three-phase inverter-fed motor power cable. Practical tests are carried out, and the results are analyzed. Possible applications for the proposed method are presented. A speed feedback motor control application is verified in detail by simulations and laboratory tests because of restrictions for the delay in the feedback loop caused by PLC. Other possible applications are discussed at a more general level.
Resumo:
The aim of this master´s thesis is to study which processes increase the auxiliary power consumption in carbon capture and storage processes and if it is possible to reduce the auxiliary power consumption with variable speed drives. Also the cost of carbon capture and storage is studied. Data about auxiliary power consumption in carbon capture is gathered from various studies and estimates made by various research centres. Based on these studies a view is presented how the power auxiliary power consumption is divided between different processes in carbon capture processes. In a literary study, the operation of three basic carbon capture systems is described. Also different methods to transport carbon dioxide and carbon dioxide storage options are described in this section. At the end of the thesis processes that consume most of the auxiliary power are defined and possibilities to reduce the auxiliary power consumption are evaluated. Cost of carbon capture, transport and storage are also evaluated at this point and in the case that the carbon capture and storage systems are fully deployed. According to the results, it can be estimated what are the processes are where variable speed drives can be used and what kind of cost and power consumption reduction could be achieved. Results also show how large a project carbon capture and storage is if it is fully deployed.
Resumo:
The main purpose of this thesis is to measure and evaluate how accurately the current energy saving calculation in ABB’s new variable speed drive ACS850 works. The main topic of this thesis is energy-efficiency parameters. At the beginning of this thesis centrifugal pump, squirrel cage motor and variable speed drive, including some equations related to them, are being introduced. Also methods of throttling control and variable speed drive control of centrifugal pumps are being introduced. These subjects are introduced because the energy saving calculation in ACS850 is related to the centrifugal pumps usually driven by squirrel cage motors. The theory also includes short section about specific energy of pumping. Before measurements the current energy saving calculation of ACS850 is being introduced and analyzed. The measurements part includes introduction of measuring equipment, measurement results, summary and analysis of the measurements. At the end of this thesis a proposal for an improvement to the current energy saving calculation is being introduced and few proposals are made for new energy-efficiency parameters, which could be added to variable speed drives. At the end are also thoughts
Resumo:
An oscillating overvoltage has become a common phenomenon at the motor terminal in inverter-fed variable-speed drives. The problem has emerged since modern insulated gate bipolar transistors have become the standard choice as the power switch component in lowvoltage frequency converter drives. Theovervoltage phenomenon is a consequence of the pulse shape of inverter output voltage and impedance mismatches between the inverter, motor cable, and motor. The overvoltages are harmful to the electric motor, and may cause, for instance, insulation failure in the motor. Several methods have been developed to mitigate the problem. However, most of them are based on filtering with lossy passive components, the drawbacks of which are typically their cost and size. In this doctoral dissertation, application of a new active du/dt filtering method based on a low-loss LC circuit and active control to eliminate the motor overvoltages is discussed. The main benefits of the method are the controllability of the output voltage du/dt within certain limits, considerably smaller inductances in the filter circuit resulting in a smaller physical component size, and excellent filtering performance when compared with typical traditional du/dt filtering solutions. Moreover, no additional components are required, since the active control of the filter circuit takes place in the process of the upper-level PWM modulation using the same power switches as the inverter output stage. Further, the active du/dt method will benefit from the development of semiconductor power switch modules, as new technologies and materials emerge, because the method requires additional switching in the output stage of the inverter and generation of narrow voltage pulses. Since additional switching is required in the output stage, additional losses are generated in the inverter as a result of the application of the method. Considerations on the application of the active du/dt filtering method in electric drives are presented together with experimental data in order to verify the potential of the method.