11 resultados para Valence Isomers

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is dedicated to investigation of the energy spectrum of one of the most anisotropic narrow-gap semiconductors, CdSb. At the beginning of the present studies even the model of its energy band structure was not clear. Measurements of galvanomagnetic effects in wide temperature range (1.6 - 300 K) and in magnetic fields up to 30 T were chosen for clarifying of the energy spectrum in the intentionally undoped CdSb single crystals and doped with shallow impurities (In, Ag). Detection of the Shubnikov - de Haas oscillations allowed estimating the fundamental energy spectrum parameters. The shapes of the Fermi surfaces of electrons (sphere) and holes (ellipsoid), the number of the equivalent extremums for valence band (2) and their positions in the Brillouin zone were determined for the first time in this work. Also anisotropy coefficients, components of the tensor of effective masses of carriers, effective masses of density of states, nonparabolicity of the conduction and valence bands, g-factor and its anisotropy for n- and p-CdSb were estimated for the first time during these studies. All the results obtained are compared with the cyclotron resonance data and the corresponding theoretical calculations for p-CdSb. This is basic information for the analyses of the complex transport properties of CdSb and for working out the energy spectrum model of the shallow energy levels of defects and impurities in this semiconductor. It was found out existence of different mechanisms of hopping conductivity in the presence of metal - insulator transition induced by magnetic field in n- and p-CdSb. Quite unusual feature opened in CdSb is that different types of hopping conductivity may take place in the same crystal depending on temperature, magnetic field or even orientation of crystal in magnetic field. Transport properties of undoped p-CdSb samples show that the anisotropy of the resistivity in weak and strong magnetic fields is determined completely by the anisotropy of the effective mass of the holes. Temperature and magnetic field dependence of the Hall coefficient and magnetoresistance is attributed to presence of two groups of holes with different concentrations and mobilities. The analysis demonstrates that below Tcr ~ 20 K and down to ~ 6 - 7 K the low-mobile carriers are itinerant holes with energy E2 ≈ 6 meV. The high-mobile carriers, at all temperatures T < Tcr, are holes activated thermally from a deeper acceptor band to itinerant states of a shallower acceptor band with energy E1 ≈ 3 meV. Analysis of temperature dependences of mobilities confirms the existence of the heavy-hole band or a non-equivalent maximum and two equivalent maxima of the light-hole valence band. Galvanomagnetic effects in n-CdSb reveal the existence of two groups of carriers. These are the electrons of a single minimum in isotropic conduction band and the itinerant electrons of the narrow impurity band, having at low temperatures the energies above the bottom of the conduction band. It is found that above this impurity band exists second impurity band of only localized states and the energy of both impurity bands depend on temperature so that they sink into the band gap when temperature is increased. The bands are splitted by the spin, and in strong magnetic fields the energy difference between them decreases and redistribution of the electrons between the two impurity bands takes place. Mobility of the conduction band carriers demonstrates that scattering in n-CdSb at low temperatures is strongly anisotropic. This is because of domination from scattering on the neutral impurity centers and increasing of the contribution to mobility from scattering by acoustic phonons when temperature increases. Metallic conductivity in zero or weak magnetic field is changed to activated conductivity with increasing of magnetic field. This exhibits a metal-insulator transition (MIT) induced by the magnetic field due to shift of the Fermi level from the interval of extended states to that of the localized states of the electron spectrum near the edge of the conduction band. The Mott variablerange hopping conductivity is observed in the low- and high-field intervals on the insulating side of the MIT. The results yield information about the density of states, the localization radius of the resonant impurity band with completely localized states and about the donor band. In high magnetic fields this band is separated from the conduction band and lies below the resonant impurity bands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic field dependencies of Hall coefficient and magnetoresistivity are investigated in classical and quantizing magnetic fields in p-Bi2Te3 crystals heavily doped with Sn grown by Czochralsky method. Magnetic field was parallel to the trigonal axis C3. Shubnikov-de Haas effect and quantum oscillations of the Hall coefficient were measured at temperatures 4.2 K and 11 K. On the basis of the magnetic field dependence of the Hall coefficient a method of estimation of the Hall factor and Hall mobility using the Drabble- Wolf six ellipsoid model is proposed. Shubnikov-de Haas effect and quantum oscillations of the Hall coefficient were observed at 4.2 K and 11 K. New evidence for the existence of the narrow band of Sn impurity states was shown. This band is partly filled by electrons and it is overlapping with the valence states of the light holes. Parameters of the impurity states, their energy ESn - 15 meV, band broadening ¿<< k0T and localization radius of the impuritystate R - 30 Å were obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, the sorption and elastic properties of the cation-exchange resins were studied to explain the liquid chromatographic separation of carbohydrates. Na+, Ca2+ and La3+ form strong poly(styrene-co-divinylbenzene) (SCE) as well as Na+ and Ca2+ form weak acrylic (WCE) cation-exchange resins at different cross-link densities were treated within this work. The focus was on the effects of water-alcohol mixtures, mostly aqueous ethanol, and that of the carbohydrates. The carbohydrates examined were rhamnose, xylose, glucose, fructose, arabinose, sucrose, xylitol and sorbitol. In addition to linear chromatographic conditions, non-linear conditions more typical for industrial applications were studied. Both experimental and modeling aspectswere covered. The aqueous alcohol sorption on the cation-exchangers were experimentally determined and theoretically calculated. The sorption model includes elastic parameters, which were obtained from sorption data combined with elasticity measurements. As hydrophilic materials cation-exchangers are water selective and shrink when an organic solvent is added. At a certain deswelling degree the elastic resins go through glass transition and become as glass-like material. Theincreasing cross-link level and the valence of the counterion decrease the sorption of solvent components in the water-rich solutions. The cross-linkage or thecounterions have less effect on the water selectivity than the resin type or the used alcohol. The amount of water sorbed is higher in the WCE resin and, moreover, the WCE resin is more water selective than the corresponding SCE resin. Theincreased aliphatic part of lower alcohols tend to increase the water selectivity, i.e. the resins are more water selective in 2-propanol than in ethanol solutions. Both the sorption behavior of carbohydrates and the sorption differences between carbohydrates are considerably affected by the eluent composition and theresin characteristics. The carbohydrate sorption was experimentally examined and modeled. In all cases, sorption and moreover the separation of carbohydrates are dominated by three phenomena: partition, ligand exchange and size exclusion. The sorption of hydrophilic carbohydrates increases when alcohol is added into the eluent or when carbohydrate is able to form coordination complexes with the counterions, especially with multivalent counterions. Decreasing polarity of the eluent enhances the complex stability. Size exclusion effect is more prominent when the resin becomes tighter or carbohydrate size increases. On the other hand,the elution volumes between different sized carbohydrates decreases with the decreasing polarity of the eluent. The chromatographic separation of carbohydrateswas modeled, using rhamnose and xylose as target molecules. The thermodynamic sorption model was successfully implemented in the rate-based column model. The experimental chromatographic data were fitted by using only one adjustable parameter. In addition to the fitted data also simulated data were generated and utilized in explaining the effect of the eluent composition and of the resin characteristics on the carbohydrate separation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis is studied the influence of uniaxial deformation of GaAs/AlGaAs quantum well structures to photoluminescence. Uniaxial deformation was applied along [110] and polarization ratio of photoluminescence at T = 77 K and 300 K was measured. Also the physical origin of photoluminescence lines in spectrum was determined and the energy band splitting value between states of heavy and light holes was estimated. It was found that the dependencies of polarization ratio on uniaxial deformation for bulk GaAs and GaAs/AlGaAs are different. Two observed lines in photoluminescence spectrum are induced by free electron recombination to energy sublevels of valence band corresponding to heavy and light holes. Those sublevels are splited due to the combination of size quantization and external pressure. The quantum splitting energy value was estimated. Also was shown a method, which allows to determine the energy splitting value of sublevels at room temperature and at comparatively low uniaxial deformation, when the other method for determining of the splitting becomes impossible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Social information processing (SIP; Crick & Dodge, 1994) and social-cognitive learning theories have been often used to understand children’s problem behaviors, such as aggression. According to these theories, children’s thinking guides their subsequent behaviors. Although most of us agree that social behavior and underlying thought processes are context-dependent, personality and social development researchers have usually engaged in searching for stable patterns of dispositions and behaviors, ignoring (or treating as error) the variance across different situations and relationship types. This, however, can result in erroneous conclusions and question the interpretation of previous findings. Four studies were conducted to explore the influence of relationship context on children’s social-cognitive evaluations and behavior. Samples were fourth to sixth graders from Estonia and Finland. Social cognitions were assessed by presenting children with hypothetical vignettes where the previously identified relationship partner’s behavior had a negative consequence for the child (Studies I, II, and IV), followed by questions measuring different social-cognitive processes (e.g., hostile attributions, behavioral strategies, outcome expectations and self-efficacy beliefs for aggression). In addition, in Studies II and IV, children provided information about their behavior within a specific relationship context. In Study III, an affective priming paradigm was employed where participants were presented with a short display of photographs of children’s liked and disliked classmates, and unknown peers. The results of this thesis suggest that children’s thinking and behavior are largely influenced by the affective valence of the relationship. Moreover, cognitions guide behavior within the relationship. The current findings offer a fruitful avenue for studying the heterogeneity of peer interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is devoted to investigations of three typical representatives of the II-V diluted magnetic semiconductors, Zn1-xMnxAs2, (Zn1-xMnx)3As2 and p-CdSb:Ni. When this work started the family of the II-V semiconductors was presented by only the compounds belonging to the subgroup II3-V2, as (Zn1-xMnx)3As2, whereas the rest of the materials mentioned above were not investigated at all. Pronounced low-field magnetic irreversibility, accompanied with a ferromagnetic transition, are observed in Zn1-xMnxAs2 and (Zn1-xMnx)3As2 near 300 K. These features give evidence for presence of MnAs nanosize magnetic clusters, responsible for frustrated ground magnetic state. In addition, (Zn1-xMnx)3As2 demonstrates large paramagnetic response due to considerable amount of single Mn ions and small antiferromagnetic clusters. Similar paramagnetic system existing in Zn1-xMnxAs2 is much weaker. Distinct low-field magnetic irreversibility, accompanied with a rapid saturation of the magnetization with increasing magnetic field, is observed near the room temperature in p- CdSb:Ni, as well. Such behavior is connected to the frustrated magnetic state, determined by Ni-rich magnetic Ni1-xSbx nanoclusters. Their large non-sphericity and preferable orientations are responsible for strong anisotropy of the coercivity and saturation magnetization of p- CdSb:Ni. Parameters of the Ni1-xSbx nanoclusters are estimated. Low-temperature resistivity of p-CdSb:Ni is governed by a hopping mechanism of charge transfer. The variable-range hopping conductivity, observed in zero magnetic field, demonstrates a tendency of transformation into the nearest-neighbor hopping conductivity in non-zero magnetic filed. The Hall effect in p-CdSb:Ni exhibits presence of a positive normal and a negative anomalous contributions to the Hall resistivity. The normal Hall coefficient is governed mainly by holes activated into the valence band, whereas the anomalous Hall effect, attributable to the Ni1-xSbx nanoclusters with ferromagnetically ordered internal spins, exhibits a low-temperature power-law resistivity scaling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interest to hole-doped mixed-valence manganite perovskites is connected to the ‘colossal’ magnetoresistance. This effect or huge drop of the resistivity, ρ, in external magnetic field, B, attains usually the maximum value near the ferromagnetic Curie temperature, TC. In this thesis are investigated conductivity mechanisms and magnetic properties of the manganite perovskite compounds LaMnO3+, La1-xCaxMnO3, La1-xCaxMn1-yFeyO3 and La1- xSrxMn1-yFeyO3. When the present work was started the key role of the phase separation and its influence on the properties of the colossal magnetoresistive materials were not clear. Our main results are based on temperature dependencies of the magnetoresistance and magnetothermopower, investigated in the temperature interval of 4.2 - 300 K in magnetic fields up to 10 T. The magnetization was studied in the same temperature range in weak (up to 0.1 T) magnetic fields. LaMnO3+δ is the parent compound for preparation of the hole-doped CMR materials. The dependences of such parameters as the Curie temperature, TC, the Coulomb gap, Δ, the rigid gap, γ, and the localization radius, a, on pressure, p, are observed in LaMnO3+δ. It has been established that the dependences above can be interpreted by increase of the electron bandwidth and decrease of the polaron potential well when p is increased. Generally, pressure stimulates delocalization of the electrons in LaMnO3+δ. Doping of LaMnO3 with Ca, leading to La1-xCaxMnO3, changes the Mn3+/Mn4+ ratio significantly and brings an additional disorder to the crystal lattice. Phase separation in a form of mixture of the ferromagnetic and the spin glass phases was observed and investigated in La1- xCaxMnO3 at x between 0 and 0.4. Influence of the replacement of Mn by Fe is studied in La0.7Ca0.3Mn1−yFeyO3 and La0.7Sr0.3Mn1−yFeyO3. Asymmetry of the soft Coulomb gap and of the rigid gap in the density of localized states, small shift of the centre of the gaps with respect to the Fermi level and cubic asymmetry of the density of states are obtained in La0.7Ca0.3Mn1−yFeyO3. Damping of TC with y is connected to breaking of the double-exchange interaction by doping with Fe, whereas the irreversibility and the critical behavior of the magnetic susceptibility are determined by the phase separation and the frustrated magnetic state of La0.7Sr0.3Mn1−yFeyO3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hawthorn (Crataegus sp.) is widely distributed in the northern hemisphere (Asia, Europe and North America). It has been used as a medicinal material and food for hundreds of years both in Europe and in China. Clinical investigations and other research suggest that extracts of hawthorn fruits and leaves have multiple health effects including hypolipidaemic, anti-atherosclerotic, hypotensive, cardioprotective and blood vessel relaxing activities. Hawthorn fruit extracts have also displayed antioxidant and radical scavenging activities. Emblic leafflower fruit (Phyllanthus emblica) is widely used in Chinese and Indian traditional medicine. It has been found to have anti-cancer, hypoglycaemic and hypolipidaemic activities as well as cardioprotective effects and antioxidant activity. The fruit is currently used as a functional food targeted at obese people in China. Phenolic compounds, procyanidins (PCs), flavonols and C-glycosyl flavones in hawthorn and hydrolysable tannins in emblic leafflower fruits are considered among the major bioactive compounds in these berries. Moreover, hawthorn and emblic leafflower fruits are rich in vitamin C, triterpenoids, fruit acids, sugar alcohols and some other components with beneficial effects on the health of human beings. The aim of the thesis work was to characterise the major phenolic compounds in hawthorn fruits and leaves and emblic leafflower fruits as well as other components contributing to the nutritional profile and sensory properties of hawthorn fruits. Differences in the content and compositional profile of the major phenolic compounds, sugars, acids and sugar alcohols within various origins and species of hawthorn were also investigated. Acids, sugars and sugar alcohols in the fruits of different origins/cultivars belonging to three species (C. pinnatifida, C. brettschneideri and C. scabrifolia) of hawthorn were analysed by gas chromatography (GC-FID) and mass spectrometry (Publication I). Citric acid, quinic acid, malic acid, fructose, glucose, sorbitol and myo-inositol were found in all the subspecies. Sucrose was present only in C. scabrifolia and three cultivars of C. pinnatifida var. major. Forty-two phenolic compounds were identified/tentatively identified in fruits of C. pinnatifida var. major by polyamide column chromatography combined with high-performance liquid chromatograph-electrospray ionisation mass spectrometry (HPLC-ESI-MS) (Publication II). Ideain, chlorogenic acid, procyanidin (PC) B2, (-)-epicatechin, hyperoside and isoquercitrin were the major phenolic components identified. In addition, 35 phenolic compounds were tentatively identified based on UV and mass spectra. Eleven major phenolic compounds (hyperoside, isoquercitrin, chlorogenic acid, ideain, (-)-epicatechin, two PC dimers, three PC trimers and a PC dimer-hexoside) were quantified in the fruits of 22 cultivars/origins of three species of Chinese hawthorn by HPLC-ESI-MS with single ion recording function (SIR) (Publication III). The fruits of the hawthorn cultivars/origins investigated fell into two groups, one rich in sugars and flavonols, the other rich in acids and procyanidins. Based on the compositional features, different biological activities and sensory properties may be expected between cultivars/origins of the two groups. The results suggest that the contents of phenolic compounds, acids, sugars and sugar alcohols may be used as chemotaxonomic information distinguishing the hawthorn species from each other. Phenolic compounds in fruits and leaves of C. grayana and their changes during fruit ripening/harvesting were investigated using HPLC-UV-ESI-MS (Publication IV). (-)-Epicatechin, PC B2 and C1, hyperoside and a quercetin-pentoside were the major phenolic compounds in both fruits and leaves. Three C-glycosyl flavones (a luteolin-C-hexoside, a methyl luteolin-C-hexoside and an apigenin-C-hexoside) were present in leaves in abundance, but only at trace levels in fruits. Ideain and 5-O-caffeoylquinic acid were found in fruits only. Additionally, eleven phenolic compounds were identified/tentatively identified in both leaves and fruits (three B-type PC trimers, two B-type PC tetramers, a quercetin-rhamnosylhexoside, a quercetin-pentoside, a methoxykaempferol-methylpentosylhexoside, a quercetin-hexoside acetate, a methoxykaempferol-pentoside, chlorogenic acid and an unknown hydroxycinnamic acid derivative). The total content of phenolic compounds reached the highest level by the end of August in fruits and by the end of September in leaves. The compositional profiles of phenolic compounds in fruits and leaves of C. grayana were different from those of C. pinnatifida, C. brettschneideri, C. scabrifolia, C. pinnatifida. var. major, C. monogyna, C. laevigata and C. pentagyna. Phenolic compounds in emblic leafflower fruits were characterised by Sephadex LH-20 column chromatography combined with HPLC-ESI-MS (Publication V). A mucic acid gallate, three isomers of mucic acid lactone gallate, a galloylglucose, gallic acid, a digalloylglucose, putranjivain A, a galloyl-HHDP-glucose, elaeocarpusin and chebulagic acid represented the major phenolic compounds in fruits of emblic leafflower. In conclusion, results of this study significantly increase the current knowledge on the key bioactive and nutritional components of hawthorn and emblic leafflower fruits. These results provide important information for research on the mechanism responsible for the health benefits of these fruits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of new technologies to supplement fossil resources has led to a growing interest in the utilization of alternative routes. Biomass is a rich renewable feedstock for producing fine chemicals, polymers, and a variety of commodities replacing petroleumderived chemicals. Transformation of biomass into diverse valuable chemicals is the key concept of a biorefinery. Catalytic conversion of biomass, which reduces the use of toxic chemicals is one of the important approaches to improve the profitability of biorefineries. Utilization of gold catalysts allows conducting reactions under environmentally-friendly conditions, with a high catalytic activity and selectivity. Gold-catalyzed valorization of several biomass-derived compounds as an alternative approach to the existing technologies was studied in this work. Isomerization of linoleic acid via double bond migration towards biologically active conjugated linoleic acid isomers (CLA) was investigated. The activity and selectivity of various gold catalysts towards cis-9,trans-11-CLA and trans-10,cis-12-CLA were investigated in a semi-batch reactor, showing that the yield of the desired products varied, depending on the catalyst support. The structure sensitivity in the selective oxidation of arabinose was demonstrated using a series of gold catalysts with different Au cluster sizes in a shaker reactor operating in a semibatch mode. The gas-phase selective oxidation of ethanol was studied and the influence of the catalyst support on the catalytic performance was investigated. The selective oxidation of the lignan hydroxymatairesinol (HMR), extracted from the Norway spruce (Picea abies) knots, to the lignan oxomatairesinol (oxoMAT) was extensively investigated. The influence of the reaction conditions and catalyst properties on the yield of oxoMAT was evaluated. In particular, the structure sensitivity of the reaction was demonstrated. The catalyst deactivation and regeneration procedures were studied. The reaction kinetics and mechanism were advanced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Asymmetric synthesis using modified heterogeneous catalysts has gained lots of interest in the production of optically pure chemicals, such as pharmaceuticals, nutraceuticals, fragrances and agrochemicals. Heterogeneous modified catalysts capable of inducing high enantioselectivities are preferred in industrial scale due to their superior separation and handling properties. The topic has been intensively investigated both in industry and academia. The enantioselective hydrogenation of ethyl benzoylformate (EBF) to (R)-ethyl mandelate over (-)-cinchonidine (CD)-modified Pt/Al2O3 catalyst in a laboratory-scale semi-batch reactor was studied as a function of modifier concentration, reaction temperature, stirring rate and catalyst particle size. The main product was always (R)-ethyl mandelate while small amounts of (S)-ethyl mandelate were obtained as by product. The kinetic results showed higher enantioselectivity and lower initial rates approaching asymptotically to a constant value as the amount of modifier was increased. Additionally, catalyst deactivation due to presence of impurities in the feed was prominent in some cases; therefore activated carbon was used as a cleaning agent of the raw material to remove impurities prior to catalyst addition. Detailed characterizations methods (SEM, EDX, TPR, BET, chemisorption, particle size distribution) of the catalysts were carried out. Solvent effects were also studied in the semi-batch reactor. Solvents with dielectric constant (e) between 2 and 25 were applied. The enantiomeric excess (ee) increased with an increase of the dielectric coefficient up to a maximum followed by a nonlinear decrease. A kinetic model was proposed for the enantioselectivity dependence on the dielectric constant based on the Kirkwood treatment. The non-linear dependence of ee on (e) successfully described the variation of ee in different solvents. Systematic kinetic experiments were carried out in the semi-batch reactor. Toluene was used as a solvent. Based on these results, a kinetic model based on the assumption of different number of sites was developed. Density functional theory calculations were applied to study the energetics of the EBF adsorption on pure Pt(1 1 1). The hydrogenation rate constants were determined along with the adsorption parameters by non-linear regression analysis. A comparison between the model and the experimental data revealed a very good correspondence. Transient experiments in a fixed-bed reactor were also carried out in this work. The results demonstrated that continuous enantioselective hydrogenation of EBF in hexane/2-propanol 90/10 (v/v) is possible and that continuous feeding of (-)-cinchonidine is needed to maintain a high steady-state enantioselectivity. The catalyst showed a good stability and high enantioselectivity was achieved in the fixed-bed reactor. Chromatographic separation of (R)- and (S)-ethyl mandelate originating from the continuous reactor was investigated. A commercial column filled with a chiral resin was chosen as a perspective preparative-scale adsorbent. Since the adsorption equilibrium isotherms were linear within the entire investigated range of concentrations, they were determined by pulse experiments for the isomers present in a post-reaction mixture. Breakthrough curves were measured and described successfully by the dispersive plug flow model with a linear driving force approximation. The focus of this research project was the development of a new integrated production concept of optically active chemicals by combining heterogeneous catalysis and chromatographic separation technology. The proposed work is fundamental research in advanced process technology aiming to improve efficiency and enable clean and environmentally benign production of enantiomeric pure chemicals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Defects in semiconductor crystals and at their interfaces usually impair the properties and the performance of devices. These defects include, for example, vacancies (i.e., missing crystal atoms), interstitials (i.e., extra atoms between the host crystal sites), and impurities such as oxygen atoms. The defects can decrease (i) the rate of the radiative electron transition from the conduction band to the valence band, (ii) the amount of charge carriers, and (iii) the mobility of the electrons in the conduction band. It is a common situation that the presence of crystal defects can be readily concluded as a decrease in the luminescence intensity or in the current flow for example. However, the identification of the harmful defects is not straightforward at all because it is challenging to characterize local defects with atomic resolution and identification. Such atomic-scale knowledge is however essential to find methods for reducing the amount of defects in energy-efficient semiconductor devices. The defects formed in thin interface layers of semiconductors are particularly difficult to characterize due to their buried and amorphous structures. Characterization methods which are sensitive to defects often require well-defined samples with long range order. Photoelectron spectroscopy (PES) combined with photoluminescence (PL) or electrical measurements is a potential approach to elucidate the structure and defects of the interface. It is essential to combine the PES with complementary measurements of similar samples to relate the PES changes to changes in the interface defect density. Understanding of the nature of defects related to III-V materials is relevant to developing for example field-effect transistors which include a III-V channel, but research is still far from complete. In this thesis, PES measurements are utilized in studies of various III-V compound semiconductor materials. PES is combined with photoluminescence measurements to study the SiO2/GaAs, SiNx/GaAs and BaO/GaAs interfaces. Also the formation of novel materials InN and photoluminescent GaAs nanoparticles are studied. Finally, the formation of Ga interstitial defects in GaAsN is elucidated by combining calculational results with PES measurements.