4 resultados para User Computer Interface

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Current hearing-assistive technology performs poorly in noisy multi-talker conditions. The goal of this thesis was to establish the feasibility of using EEG to guide acoustic processing in such conditions. To attain this goal, this research developed a model via the constructive research method, relying on literature review. Several approaches have revealed improvements in the performance of hearing-assistive devices under multi-talker conditions, namely beamforming spatial filtering, model-based sparse coding shrinkage, and onset enhancement of the speech signal. Prior research has shown that electroencephalography (EEG) signals contain information that concerns whether the person is actively listening, what the listener is listening to, and where the attended sound source is. This thesis constructed a model for using EEG information to control beamforming, model-based sparse coding shrinkage, and onset enhancement of the speech signal. The purpose of this model is to propose a framework for using EEG signals to control sound processing to select a single talker in a noisy environment containing multiple talkers speaking simultaneously. On a theoretical level, the model showed that EEG can control acoustical processing. An analysis of the model identified a requirement for real-time processing and that the model inherits the computationally intensive properties of acoustical processing, although the model itself is low complexity placing a relatively small load on computational resources. A research priority is to develop a prototype that controls hearing-assistive devices with EEG. This thesis concludes highlighting challenges for future research.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The primary goals of this study are to: embed sustainable concepts of energy consumption into certain part of existing Computer Science curriculum for English schools; investigate how to motivate 7-to-11 years old kids to learn these concepts; promote responsive ICT (Information and Communications Technology) use by these kids in their daily life; raise their awareness of today’s ecological challenges. Sustainability-related ICT lessons developed aim to provoke computational thinking and creativity to foster understanding of environmental impact of ICT and positive environmental impact of small changes in user energy consumption behaviour. The importance of including sustainability into the Computer Science curriculum is due to the fact that ICT is both a solution and one of the causes of current world ecological problems. This research follows Agile software development methodology. In order to achieve the aforementioned goals, sustainability requirements, curriculum requirements and technical requirements are firstly analysed. Secondly, the web-based user interface is designed. In parallel, a set of three online lessons (video, slideshow and game) is created for the website GreenICTKids.com taking into account several green design patterns. Finally, the evaluation phase involves the collection of adults’ and kids’ feedback on the following: user interface; contents; user interaction; impacts on the kids’ sustainability awareness and on the kids’ behaviour with technologies. In conclusion, a list of research outcomes is as follows: 92% of the adults learnt more about energy consumption; 80% of the kids are motivated to learn about energy consumption and found the website easy to use; 100% of the kids understood the contents and liked website’s visual aspect; 100% of the kids will try to apply in their daily life what they learnt through the online lessons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Jatkuvasti lisääntyvä matkapuhelinten käyttäjien määrä, internetin kehittyminen yleiseksi tiedon ja viihteen lähteeksi on luonut tarpeen palvelulle liikkuvan työaseman liittämiseksi tietokoneverkkoihin. GPRS on uusi teknologia, joka tarjoaa olemassa olevia matka- puhelinverkkoja (esim. NMT ja GSM) nopeamman, tehokkaamman ja taloudellisemman liitynnän pakettidataverkkoihin, kuten internettiin ja intranetteihin. Tämän työn tavoitteena oli toteuttaa GPRS:n paketinohjausyksikön (Packet Control Unit, PCU) testauksessa tarvittavat viestintäajurit työasemaympristöön. Aidot matkapuhelinverkot ovat liian kalliita, eikä niistä saa tarvittavasti lokitulostuksia, jotta niitä voisi käyttää GPRS:n testauksessa ohjelmiston kehityksen alkuvaihessa. Tämän takia PCU-ohjelmiston testaus suoritetaan joustavammassa ja helpommin hallittavassa ympäristössä, joka ei aseta kovia reaaliaikavaatimuksia. Uusi toimintaympäristö ja yhteysmedia vaativat PCU:n ja muiden GPRS-verkon yksiköiden välisistä yhteyksistä huolehtivien ohjelman osien, viestintäajurien uuden toteutuksen. Tämän työn tuloksena syntyivät tarvittavien viestintäajurien työasemaversiot. Työssä tarkastellaan eri tiedonsiirtotapoja ja -protokollia testattavan ohjelmiston vaateiden, toteutetun ajurin ja testauksen kannalta. Työssä esitellään kunkin ajurin toteuttama rajapinta ja toteutuksen aste, eli mitkä toiminnot on toteutettu ja mitä on jätetty pois. Ajureiden rakenne ja toiminta selvitetään siltä osin, kuin se on oleellista ohjelman toiminnan kannalta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The traditional process of filling the medicine trays and dispensing the medicines to the patients in the hospitals is manually done by reading the printed paper medicine chart. This process can be very strenuous and error-prone, given the number of sub-tasks involved in the entire workflow and the dynamic nature of the work environment. Therefore, efforts are being made to digitalise the medication dispensation process by introducing a mobile application called Smart Dosing application. The introduction of the Smart Dosing application into hospital workflow raises security concerns and calls for security requirement analysis. This thesis is written as a part of the smart medication management project at Embedded Systems Laboratory, A° bo Akademi University. The project aims at digitising the medicine dispensation process by integrating information from various health systems, and making them available through the Smart Dosing application. This application is intended to be used on a tablet computer which will be incorporated on the medicine tray. The smart medication management system include the medicine tray, the tablet device, and the medicine cups with the cup holders. Introducing the Smart Dosing application should not interfere with the existing process carried out by the nurses, and it should result in minimum modifications to the tray design and the workflow. The re-designing of the tray would include integrating the device running the application into the tray in a manner that the users find it convenient and make less errors while using it. The main objective of this thesis is to enhance the security of the hospital medicine dispensation process by ensuring the security of the Smart Dosing application at various levels. The methods used for writing this thesis was to analyse how the tray design, and the application user interface design can help prevent errors and what secure technology choices have to be made before starting the development of the next prototype of the Smart Dosing application. The thesis first understands the context of the use of the application, the end-users and their needs, and the errors made in everyday medication dispensation workflow by continuous discussions with the nursing researchers. The thesis then gains insight to the vulnerabilities, threats and risks of using mobile application in hospital medication dispensation process. The resulting list of security requirements was made by analysing the previously built prototype of the Smart Dosing application, continuous interactive discussions with the nursing researchers, and an exhaustive stateof- the-art study on security risks of using mobile applications in hospital context. The thesis also uses Octave Allegro method to make the readers understand the likelihood and impact of threats, and what steps should be taken to prevent or fix them. The security requirements obtained, as a result, are a starting point for the developers of the next iteration of the prototype for the Smart Dosing application.