47 resultados para Unbalanced operation of diode-clamped three-level inverter
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The aim of this thesis is to investigate the thermal loading of medium voltage three-level NPC inverter’s semiconductor IGCT switches in different operation points. The objective is to reach both a fairly accurate off-line simulation program and also so simple a simulation model that its implementation into an embedded system could be reasonable in practice and a real time use should become feasible. Active loading limitation of the inverter can be realized with a thermal model which is practical in a real time use. Determining of the component heating has been divided into two parts; defining of component losses and establishing the structure of a thermal network. Basics of both parts are clarified. The simulation environment is Matlab-Simulink. Two different models are constructed – a more accurate one and a simplified one. Potential simplifications are clarified with the help of the first one. Simplifications are included in the latter model and the functionalities of both models are compared. When increasing the calculation time step a decreased number of considered components and time constants of the thermal network can be used in the simplified model. Heating of a switching component is dependent on its topological position and inverter’s operation point. The output frequency of the converter defines mainly which one of the switching components is – because of its losses and heating – the performance limiting component of the converter. Comparison of results given by different thermal models demonstrates that with larger time steps, describing of fast occurring switching losses becomes difficult. Generally articles and papers dealing with this subject are written for two-level inverters. Also inverters which apply direct torque control (DTC) are investigated rarely from the heating point of view. Hence, this thesis completes the former material.
Resumo:
The objective of this master’s thesis is to investigate the loss behavior of three-level ANPC inverter and compare it with conventional NPC inverter. The both inverters are controlled with mature space vector modulation strategy. In order to provide the comparison both accurate and detailed enough NPC and ANPC simulation models should be obtained. The similar control model of SVM is utilized for both NPC and ANPC inverter models. The principles of control algorithms, the structure and description of models are clarified. The power loss calculation model is based on practical calculation approaches with certain assumptions. The comparison between NPC and ANPC topologies is presented based on results obtained for each semiconductor device, their switching and conduction losses and efficiency of the inverters. Alternative switching states of ANPC topology allow distributing losses among the switches more evenly, than in NPC inverter. Obviously, the losses of a switching device depend on its position in the topology. Losses distribution among the components in ANPC topology allows reducing the stress on certain switches, thus losses are equally distributed among the semiconductors, however the efficiency of the inverters is the same. As a new contribution to earlier studies, the obtained models of SVM control, NPC and ANPC inverters have been built. Thus, this thesis can be used in further more complicated modelling of full-power converters for modern multi-megawatt wind energy conversion systems.
Resumo:
Recent Storms in Nordic countries were a reason of long power outages in huge territories. After these disasters distribution networks' operators faced with a problem how to provide adequate quality of supply in such situation. The decision of utilization cable lines rather than overhead lines were made, which brings new features to distribution networks. The main idea of this work is a complex analysis of medium voltage distribution networks with long cable lines. High value of cable’s specific capacitance and length of lines determine such problems as: high values of earth fault currents, excessive amount of reactive power flow from distribution to transmission network, possibility of a high voltage level at the receiving end of cable feeders. However the core tasks was to estimate functional ability of the earth fault protection and the possibility to utilize simplified formulas for operating setting calculations in this network. In order to provide justify solution or evaluation of mentioned above problems corresponding calculations were made and in order to analyze behavior of relay protection principles PSCAD model of the examined network have been created. Evaluation of the voltage rise in the end of a cable line have educed absence of a dangerous increase in a voltage level, while excessive value of reactive power can be a reason of final penalty according to the Finish regulations. It was proved and calculated that for this networks compensation of earth fault currents should be implemented. In PSCAD models of the electrical grid with isolated neutral, central compensation and hybrid compensation were created. For the network with hybrid compensation methodology which allows to select number and rated power of distributed arc suppression coils have been offered. Based on the obtained results from experiments it was determined that in order to guarantee selective and reliable operation of the relay protection should be utilized hybrid compensation with connection of high-ohmic resistor. Directional and admittance based relay protection were tested under these conditions and advantageous of the novel protection were revealed. However, for electrical grids with extensive cabling necessity of a complex approach to the relay protection were explained and illustrated. Thus, in order to organize reliable earth fault protection is recommended to utilize both intermittent and conventional relay protection with operational settings calculated by the use of simplified formulas.
Resumo:
Innovation improves human affluence and comfort and is key driver of nation’s economic progression. This study focuses on National innovation systems in general and Finnish national innovation system in particular. It is known that innovation process does not work in isolation; rather it is an outcome of role played numerous actors. In this study three aspects are explained- firstly, to define the most important actors of National innovation systems and secondly, a framework to analyze National innovation system. Third aspect of this study highlights and analyzes the key aspects of Finnish National Innovation system. Moreover, during the course of this study emphasis was given on the utmost central processes which are required to come off in innovation system as they can successfully lead towards innovation.
Resumo:
A model to solve heat and mass balances during the offdesign load calculations was created. These equations are complex and nonlinear. The main new ideas used in the created offdesign model of a kraft recovery boiler are the use of heat flows as torn iteration variables instead of the current practice of using the mass flows, vectorizing equation solving, thus speeding up the process, using non dimensional variables for solving the multiple heat transfer surface problem and using a new procedure for calculating pressure losses. Recovery boiler heat and mass balances are reduced to vector form. It is shown that these vectorized equations can be solved virtually without iteration. The iteration speed is enhanced by the use of the derived method of calculating multiple heat transfer surfaces simultaneously. To achieve this quick convergence the heat flows were used as the torn iteration parameters. A new method to handle pressure loss calculations with linearization was presented. This method enabled less time to be spent calculating pressure losses. The derived vector representation of the steam generator was used to calculate offdesign operation parameters for a 3000 tds/d example recovery boiler. The model was used to study recovery boiler part load operation and the effect of the black liquor dry solids increase on recovery boiler dimensioning. Heat flows to surface elements for part load calculations can be closely approximated with a previously defined exponent function. The exponential method can be used for the prediction of fouling in kraft recovery boilers. For similar furnaces the firing of 80 % dry solids liquor produces lower hearth heat release rate than the 65 % dry solids liquor if we fire at constant steam flow. The furnace outlet temperatures show that capacity increase with firing rate increase produces higher loadings than capacity increase with dry solids increase. The economizers, boiler banks and furnaces can be dimensioned smaller if we increase the black liquor dry solids content. The main problem with increased black liquor dry solids content is the decrease in the heat available to superheat. Whenever possible the furnace exit temperature should be increased by decreasing the furnace height. The increase in the furnace exit temperature is usually opposed because of fear of increased corrosion.
Resumo:
The purpose of this study was to develop co-operation between business units of the company operating in graphic industry. The development was done by searching synergy opportunities between these business units. The final aim was to form a business model, which is based on co-operation of these business units.The literature review of this thesis examines synergies and especially the process concerning the search and implementation of synergies. Also the concept of business model and its components are examined. The research was done by using qualitative research method. The main data acquiring method to the empirical part was theme interviews. The data was analyzed using thematisation and content analysis.The results of the study include seven identified possible synergies and a business model, which is based on the co-operation of the business units. The synergy opportunities are evaluated and the implementation order of the synergies is suggested. The presented synergies create the base for the proposed business model.
Resumo:
Detta arbete fokuserar på modellering av katalytiska gas-vätskereaktioner som genomförs i kontinuerliga packade bäddar. Katalyserade gas-vätskereaktioner hör till de mest typiska reaktionerna i kemisk industri; därför behandlas här packade bäddreaktorer som ett av de populäraste alternativen, då kontinuerlig drift eftersträvas. Tack vare en stor katalysatormängd per volym har de en kompakt struktur, separering av katalysatorn behövs inte och genom en professionell design kan den mest fördelaktiga strömningsbilden upprätthållas i reaktorn. Packade bäddreaktorer är attraktiva p.g.a. lägre investerings- och driftskostnader. Även om packade bäddar används intensivt i industri, är det mycket utmanande att modellera. Detta beror på att tre faser samexisterar och systemets geometri är komplicerad. Existensen av flera reaktioner gör den matematiska modelleringen även mera krävande. Många förenklingar blir därmed nödvändiga. Modellerna involverar typiskt flera parametrar som skall justeras på basis av experimentella data. I detta arbete studerades fem olika reaktionssystem. Systemen hade studerats experimentellt i vårt laboratorium med målet att nå en hög produktivitet och selektivitet genom ett optimalt val av katalysatorer och driftsbetingelser. Hydrering av citral, dekarboxylering av fettsyror, direkt syntes av väteperoxid samt hydrering av sockermonomererna glukos och arabinos användes som exempelsystem. Även om dessa system hade mycket gemensamt, hade de också unika egenskaper och krävde därför en skräddarsydd matematisk behandling. Citralhydrering var ett system med en dominerande huvudreaktion som producerar citronellal och citronellol som huvudprodukter. Produkterna används som en citrondoftande komponent i parfymer, tvålar och tvättmedel samt som plattform-kemikalier. Dekarboxylering av stearinsyra var ett specialfall, för vilket en reaktionsväg för produktion av långkedjade kolväten utgående från fettsyror söktes. En synnerligen hög produktselektivitet var karakteristisk för detta system. Även processuppskalning modellerades för dekarboxylerings-reaktionen. Direkt syntes av väteperoxid hade som målsättning att framta en förenklad process att producera väteperoxid genom att låta upplöst väte och syre reagera direkt i ett lämpligt lösningsmedel på en aktiv fast katalysator. I detta system förekommer tre bireaktioner, vilka ger vatten som oönskad produkt. Alla dessa tre reaktioner modellerades matematiskt med hjälp av dynamiska massbalanser. Målet med hydrering av glukos och arabinos är att framställa produkter med en hög förädlingsgrad, nämligen sockeralkoholer, genom katalytisk hydrering. För dessa två system löstes ämnesmängd- och energibalanserna simultant för att evaluera effekter inne i porösa katalysatorpartiklar. Impulsbalanser som bestämmer strömningsbetingelser inne i en kemisk reaktor, ersattes i alla modelleringsstudier med semi-empiriska korrelationsuttryck för vätskans volymandel och tryckförlust och med axiell dispersionsmodell för beskrivning av omblandningseffekter. Genom att justera modellens parametrar kunde reaktorns beteende beskrivas väl. Alla experiment var genomförda i laboratorieskala. En stor mängd av kopplade effekter samexisterade: reaktionskinetik inklusive adsorption, katalysatordeaktivering, mass- och värmeöverföring samt strömningsrelaterade effekter. En del av dessa effekter kunde studeras separat (t.ex. dispersionseffekter och bireaktioner). Inverkan av vissa fenomen kunde ibland minimeras genom en noggrann planering av experimenten. På detta sätt kunde förenklingar i modellerna bättre motiveras. Alla system som studerades var industriellt relevanta. Utveckling av nya, förenklade produktionsteknologier för existerande kemiska komponenter eller nya komponenter är ett gigantiskt uppdrag. Studierna som presenterades här fokuserade på en av den teknisk-vetenskapliga utfärdens första etapper.
Resumo:
Fertilizer plant’s process waters contain high concentrations of nitrogen compounds, such as ammonium and nitrate. Phosphorus and fluorine, which originate from phosphoric acid and rock phosphate (apatite) used in fertilizer production, are also present. Phosphorus and nitrogen are the primary nutrients causing eutrophication of surface waters. At fertilizer plant process waters are held in closed internal circulation. In a scrubber system process waters are used for washing exhaust gases from fertilizer reactors and dry gases from granulation drums as well as for cooling down the fertilizer slurry in neutralization reactor. Solids in process waters are separated in an inclined plate settler by gravitational sedimentation. However, the operation of inclined plate settler has been inadequate. The aim of this thesis was to intensify the operation of inclined plate settler and thus the solids separation e.g. through coagulation and/or flocculation process. Chemical precipitation was studied to reduce the amount of dissolved species in process waters. Specific interest was in precipitation of nitrogen, phosphorus, and fluorine containing specimens. Amounts of phosphorus and fluorine were reduced significantly by chemical precipitation. When compared to earlier studies, annual chemical costs were almost eight times lower. Instead, nitrogen compounds are readily dissolved in water, thus being difficult to remove by precipitation. Possible alternative techniques for nitrogen removal are adsorption, ion exchange, and reverse osmosis. Settling velocities of pH adjusted and flocculated process waters were sufficient for the operation of inclined plate settler. Design principles of inclined plate settler are also presented. In continuation studies, flow conditions in inclined plate settler should be modelled with computational fluid dynamics and suitability of adsorbents, ion exchange resins, and membranes should be studied in laboratory scale tests.
Resumo:
The maximum realizable power throughput of power electronic converters may be limited or constrained by technical or economical considerations. One solution to this problemis to connect several power converter units in parallel. The parallel connection can be used to increase the current carrying capacity of the overall system beyond the ratings of individual power converter units. Thus, it is possible to use several lower-power converter units, produced in large quantities, as building blocks to construct high-power converters in a modular manner. High-power converters realized by using parallel connection are needed for example in multimegawatt wind power generation systems. Parallel connection of power converter units is also required in emerging applications such as photovoltaic and fuel cell power conversion. The parallel operation of power converter units is not, however, problem free. This is because parallel-operating units are subject to overcurrent stresses, which are caused by unequal load current sharing or currents that flow between the units. Commonly, the term ’circulatingcurrent’ is used to describe both the unequal load current sharing and the currents flowing between the units. Circulating currents, again, are caused by component tolerances and asynchronous operation of the parallel units. Parallel-operating units are also subject to stresses caused by unequal thermal stress distribution. Both of these problemscan, nevertheless, be handled with a proper circulating current control. To design an effective circulating current control system, we need information about circulating current dynamics. The dynamics of the circulating currents can be investigated by developing appropriate mathematical models. In this dissertation, circulating current models aredeveloped for two different types of parallel two-level three-phase inverter configurations. Themodels, which are developed for an arbitrary number of parallel units, provide a framework for analyzing circulating current generation mechanisms and developing circulating current control systems. In addition to developing circulating current models, modulation of parallel inverters is considered. It is illustrated that depending on the parallel inverter configuration and the modulation method applied, common-mode circulating currents may be excited as a consequence of the differential-mode circulating current control. To prevent the common-mode circulating currents that are caused by the modulation, a dual modulator method is introduced. The dual modulator basically consists of two independently operating modulators, the outputs of which eventually constitute the switching commands of the inverter. The two independently operating modulators are referred to as primary and secondary modulators. In its intended usage, the same voltage vector is fed to the primary modulators of each parallel unit, and the inputs of the secondary modulators are obtained from the circulating current controllers. To ensure that voltage commands obtained from the circulating current controllers are realizable, it must be guaranteed that the inverter is not driven into saturation by the primary modulator. The inverter saturation can be prevented by limiting the inputs of the primary and secondary modulators. Because of this, also a limitation algorithm is proposed. The operation of both the proposed dual modulator and the limitation algorithm is verified experimentally.
Resumo:
Data transmission between an electric motor and a frequency converter is required in variablespeed electric drives because of sensors installed at the motor. Sensor information can be used for various useful applications to improve the system reliability and its properties. Traditionally, the communication medium is implemented by an additional cabling. However, the costs of the traditional method may be an obstacle to the wider application of data transmission between a motor and a frequency converter. In any case, a power cable is always installed between a motor and a frequency converter for power supply, and hence it may be applied as a communication medium for sensor level data. This thesis considers power line communication (PLC) in inverter-fed motor power cables. The motor cable is studied as a communication channel in the frequency band of 100 kHz−30 MHz. The communication channel and noise characteristics are described. All the individual components included in a variable-speed electric drive are presented in detail. A channel model is developed, and it is verified by measurements. A theoretical channel information capacity analysis is carried out to estimate the opportunities of a communication medium. Suitable communication and forward error correction (FEC) methods are suggested. A general method to implement a broadband and Ethernet-based communication medium between a motor and a frequency converter is proposed. A coupling interface is also developed that allows to install the communication device safely to a three-phase inverter-fed motor power cable. Practical tests are carried out, and the results are analyzed. Possible applications for the proposed method are presented. A speed feedback motor control application is verified in detail by simulations and laboratory tests because of restrictions for the delay in the feedback loop caused by PLC. Other possible applications are discussed at a more general level.
Resumo:
From the boiler design point of view, it is imperative to know and understand the operation of the boiler. Since comprehensive measurement of a large furnace is impossible, the furnace can be modeled in order to study its behavior and phenomena. This requires the used model to be validated to correspond with the physical furnace behavior. In this thesis, a three dimensional furnace model is validated to match a bituminous coal utilizing, supercritical once-through circulating fluidized bed combustor based on measurement data. The validated model is used for analyzing the furnace heat transfer. Other heat transfer analysis methods are energy balance method based on tube surface temperature measurements and a method based on measured temperature difference between the tube crest and the fin. The latter method was developed in the thesis using Fluent-software. In the theory part, literature is reviewed and the fundamental aspects of circulating fluidized bed are discussed. These aspects are solid particle behavior in fluidization known as hydrodynamics, behavior of fuel and combustion and heat transfer. Fundamental aspects of modeling are also presented.
Resumo:
A high-frequency cyclonverter acts as a direct ac-to-ac power converter circuit that does not require a diode bidge rectifier. Bridgeless topology makes it possible to remove forward voltage drop losses that are present in a diode bridge. In addition, the on-state losses can be reduced to 1.5 times the on-state resistance of switches in half-bridge operation of the cycloconverter. A high-frequency cycloconverter is reviewed and the charging effect of the dc-capacitors in ``back-to-back'' or synchronous mode operation operation is analyzed. In addition, a control method is introduced for regulating dc-voltage of the ac-side capacitors in synchronous operation mode. The controller regulates the dc-capacitors and prevents switches from reaching overvoltage level. This can be accomplished by variating phase-shift between the upper and the lower gate signals. By adding phase-shift between the gate signal pairs, the charge stored in the energy storage capacitors can be discharged through the resonant load and substantially, the output resonant current amplitude can be improved. The above goals are analyzed and illustrated with simulation. Theory is supported with practical measurements where the proposed control method is implemented in an FPGA device and tested with a high-frequency cycloconverter using super-junction power MOSFETs as switching devices.